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Schedule for today

Schedule

Time Topic Presenter
Now Preparations
9:00 - 10:00 (Supervised) machine learning with small data Manuela Zucknick
Rlab1 Manuela Zucknick
10:15-11:15 Overfitting, regularisation and all that Manuela Zucknick
Rlab2 Manuela Zucknick
11:30 - 12:00 Outlook: Hierarchical models and structured penalties Theophilus Asenso
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Github, Workshop webpage and Posit Cloud project

® Github: https://github.com/ocbe-uio/2022_
bioinformatics_workshop/

® Workshop webpage: https://ocbe-uio.github.io/2022_
bioinformatics_workshop/

® Posit Cloud project:
https://posit.cloud/content/5131383/
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Statistical Principles in Machine oo™
Learning for Small Biomedical Data

Welcome!

« The goal of the
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Some topics for this morning

Part 1
® What is supervised machine learning?
® What do we mean by small data?

® What can we do to improve ML with small data?

® Restrict the model space — Regularisation
® Borrow information — Include known structure in the model

Part 2
® Qverfitting
® Variance vs bias
® Model selection, assessment & validation
® Prediction performance
® Resampling: Cross-validation
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Further reading

James G, Witten D, Hastie T and Tibshirani R (2021), An
Introduction to Statistical Learning with Applications in R,
Springer, 2nd edition. https://www.statlearning.com

Hastie T, Tibshirani R, Friedman J (2009), The Elements of
Statistical Learning, Springer, 2nd edition.
https://hastie.su.domains/ElemStatLearn/

Holmes S, Huber W (2019), Modern Statistics for Modern
Biology, Cambridge University Press.
https://www.huber.embl.de/msmb/

(some chapters on supervised/ unsupervised machine learning)
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Introductory example:

Integrative omics for personalized cancer therapy
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Regularisation
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Personalized cancer therapy

..aims to find the best therapy for each patient based on data
about the patient and tumor (e.g. genomic data).

one diagnosis uniform therapy

variable results
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optimal results

slide by Stephan Pfister
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Single drug or combination

Personalized
therapy

Omics
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slide by Kjetil Taskén
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Predict sensitivity to multiple drugs Y from multi-omics X

'Y = XB +¢|

e Multivariate Y:
Drug dose response Measure ICg,

drug sensitivity s m‘\\
N
, | | -
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| | Source: Yang, et al. 2017
e Heterogeneous X:
Integrative omics Omics characterizations
gene expression copy number mutation Z : ‘\\ Mutation
—— Sk e

S L~ 4., Copy number
1 ! ! Sl Gene expression
n cell lines X1 | X | X = V J—
' '

Source: TCGA, 2013



Challenges and opportunities (1)

® Small sample size

® Several types of input data X:
E.g., gene expression, copy number, mutation

® Multivariate response Y
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Introduction Regularisation
00000@0000000000 0000000000000000000000000

Challenges and opportunities (2)

The data are highly structured:

In Y: relationships between drugs, e.g. due to similar
chemical drug composition, same target genes/pathways

In X: relationships between molecular data sources

a Function Memory Environment Message Product Result
Central Genome Epigenome and other regulatory elements Transcriptome | Proteome
b dogma of (DNA) (e.g. chromatin modifications,miRNA, TFs) (mRNA) (protein) Ph"enome
= (cell, tissue,
molecular L e ;
A organism)
biology { TRANSCRIPTION J LTRANSLAT\ON
-

P d
C | Datatypes <

Histone modification B Phenotype,

CN, SNPs, LOH TF binding, miRNA, Protein clinical
methylation expression | characteristics

Ickstadt et al. (2018)
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(Supervised) Machine Learning
with Small Data

Manuela Zucknick (with slides from Maren Hackenberg)



Machine learning with small data

small data O big data
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Machine learning with small data

® What do we mean by “small data”?

® |Implications for machine learning?

® Aspects when building (multi-omic) machine learning
predictors of drug response (e.g. Sammut et al. Nature 2022):

Biological knowledge +
Feature selection +

Prioritisation of accessible data types +

= W b=

Machine learning algorithms

— Develop ML methods that allow us to consider aspects 1 to 3.



What is supervised machine learning?

Supervised learning

refers to the task of inferring a functional relationship between
input data matrix X (e.g. gene expression array measurements)
and output data vector Y (= response/ outcome).

The input data are used for predicting the outcome.

Y = f5(X) + ¢,

where € captures measurement errors and other discrepancies, e.g.
by € ~ N(0,5%1,).

In classical statistics, this task is usually performed by (generalised)
linear regression models.



What do we mean by small data?

* Large p, small n (p>n)

* Potentially, more variables in the model than we have samples

* Classical statistical methods (e.g. linear regression) do not work:

* More parameters (e.g. regression coefficients) to estimate than
observations for estimating them

* Even if all parameters can be estimated: Danger of over-fitting

 Example: Predict treatment response using gene expression data
(n ~ 100, p ~20000)



What do we mean by small data?

7 M. A : different data
2 types/sources
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What can we do? (1) Restrict the model space

(2) Borrow information across observations
(3) Increase sample size ©



Predict sensitivity to multiple drugs Y from multi-omics X

e Multivariate Y:

Drug dose response
drug sensitivity
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What can we do?
(1) Restrict the model space

e (A) Careful feature engineering:
* Preselect variables by biological relevance

* Non-specific filtering, e.g. keep only variables with variance across
observations larger than a threshold

* (B) Make use of known structure in the data (biological knowledge)

e (C) Use of regularisation techniques:

e L1and L2 penalisation
* add a penalty term to the loss function to reduce the complexity of the model
* Bayesian equivalents: restrictions on the prior (Bayesian variable selection)

e Early stopping
* train a model iteratively only until the validation error starts to decrease
(boosting, neural networks)
* Dropout regularisation
* randomly dropping out neurons while training (neural networks) or
* randomly dropping features when building a regression tree (random forest)
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Regularisation
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Penalised regression

® Standard regression cannot deal with p >> n:

® The maximum-likelihood estimate 3 = arg maxg £(3) does not
exist (¢ = log-likelihood).

¢ Solution:
Penalise the likelihood function by subtracting a penalty term
and maximise penalised log-likelihood instead:

A

f=arg mgX(ﬁ(ﬁ) = Allal)

® )\ is a penalty parameter,

® ||B]| represents the size of the regression coefficient vector,

® The larger X is chosen, the more the algorithm is encouraged
to find a solution where ||3]| is small — shrinkage.
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Penalised regression

® Examples for penalty terms:
® Ridge regression (Hoerl and Kennard 1970):

MBI = A5 5 — L2 penalty
® Lasso regression (Tibshirani 1996):
MBI = AZQZI |Bg| — L; penalty

® Elastic net (Zou and Hastie 2005):
Combination of both ridge and lasso penalty:

A1 Z:l 1Bl + A 2:1 e

® Advantage of lasso and elastic net:
Both will produce a sparse solution, where only a few genes
have estimate (g # 0.
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Penalised regression

Examples for coefficient paths relative to penality A:

Ridge regresson Lasso regression
Icavol
é o Ibph é
8 &
3 ieason
age
Icp
T T T T T T T T
0 2 4 6 8 00 02 04 06 08 10
df(x) Shrinkage Factor s
Hastie et al. (2009), Figures 3.8 and 3.10
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Introduction Regularisation
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Penalised regression

® Ridge regression Lj: shrinks all coefficients to small, but
non-zero values.

® |asso regression Li: shrinks some coefficients to exactly zero.

® FElastic net: mixture of the two: does shrink some coeffients to
exactly zero. Keeps more variables if there is correlation.

Bz B2

A

‘ B B

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1] + 82| < s and B2 + B2 < s, while the red ellipses are the contours of
the RSS.
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Regularisation
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Different penalties for different types of data
Assume two data matrices X and Z:
Y=XB+Zy+e¢€
® Mandatory covariates: Do not penalise the parameters +:

e.g. with R packages glmnet or penalized

® Several types of molecular data sets:
Allow different penalties for 5 and ~:

tpen(B,7) = £(5,7) — AsllBll = M1l

e.g. with R packages GRridge (Van de Wiel et al., 2016)
http://www.few.vu.nl/~mavdwiel/grridge.html)
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Different penalties for different types of data

Assume two data matrices X and Z:
Y=XB+Zy+e¢

e Several types of molecular data sets:

® Alternative: Combine all data and use one penalty, after
scaling all features to unit variance to ensure that the data
sources are treated equally.

e Example: Elastic Net models in Barretina et al. (2012)

MedBiolnfo - Machine Learning Machine learning for small data 1



What can we do?
(2) Borrow information

* Borrow information across observations in the data set

* If there is correlation, include this in your model

* between variables (e.g. MRF prior for defining which variables to
include together)

* between samples (covariance matrix)

* Borrow information from external knowledge

* E.g., use pathways to determine which genes should be included
together

* Borrow information across data sets: transfer learning



Make use of external (biological) knowledge

* (1) Use known relationships with one data source (CNV) to
guide the variable selection in another (gene expression)

e (2) Combine the data-driven ML approach with
knowledge-driven mechanistic modelling

e (3) Make use of correlations in the data
* between input variables - to restrict the model space
* between response variables - to borrow information



(1) Use known relationships with one data source
to guide the variable selection in another

Std. dev. of CNV data of HER2-pos. breast cancer and healthy tissue samples

ERBB2==HER2
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Location (chromosome)

Idea: Use CNV information to weigh prior inclusion probabilities of gene
expression variables in Bayesian variable selection



(1) Use known relationships with one data source to
guide the variable selection in another
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(2) Combine the data-driven ML approach with
knowledge-driven mechanistic modelling

An exemplary small data challenge: Learn disease trajectories
of patients with spinal muscular atrophy <
SMARTCARE

@ i
&

characterisation
. age
«  SMA subtype

oooo
oooo
Baseline Different motor function
tests over time
HFMSE . RULM
. HFMSE

d oo @) -O0-0-0 O
dt M= Q 0Doo
0o8a HFMSE
Latent health  Explicit Subgroup-specific ~ Hetero- Irregular time  Different motor
status model local models geneity points function tests

22-10-25 Differentiable programming for flexible modelling with small data - Maren Hackenberg




(2) Combine the data-driven ML approach with
knowledge-driven mechanistic modelling

Describe individual SMA trajectories as ODEs in the
latent space of a deep learning model

-O0-0-0H

Time series
of motor
function
test

Baseline
variables

m = init_ODEVAE()
ps = getparams(m)
opt = ADAM(n)

solve ODE
& ) = (), m)
p(to) = p®

time s
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o o [o)
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° o o
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time
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\ time j
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Differentiable programming for flexible modelling with small data - Maren Hackenberg

trainingdata = zip(xs,

for epoch in 1:epochs
Recon for (X, Y, t) in trainingdata

grads = gradient(ps) do
StrUCted loss(X, Y, t, m, args=args)

update! (opt, ps, grads)
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(3) Make use of correlations in the data:
between input variables - to restrict the model space

BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance
Selectionin Linear Regression

Zhi Zhao, Marco Banterle, Leonardo Bottolo, Sylvia Richardson, Alex Lewin, Manuela Zucknick

Paper R package (BayesSUR) B Rreplication code
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(3) Make use of correlations in the data:
between input variables - to restrict the model space

® Formulation of the model:

Y = XB + U,
vec(U) ~ NV(0, C®1,)

Brilvig, w ~ vigN (0, w) + (1 = v47)00(Bxj)

for each element 3y; in B.

Y n x m matrix of outcomes with m x m covariance matrix C,
X n x p matrix of predictors for all outcomes,
B p x m matrix of regression coefficients,

[ ]
[ ]
[ ]
® T'={vjk} p x m binary indicator matrix for variable selection.

vk ~ Bernoulli  ~;, ~ Hotspot v ~ MRF
C ~ indep HRR-B HRR-H HRR-M
C~TIW dSUR-B dSUR-H dSUR-M
C~HIWg SSUR-B SSUR-H SSUR-M




(3) Make use of correlations in the data:
between input variables - to restrict the model space

MRF prior for pharmacogenomics

f(v|d,e, G) ocxcexp{dl'y +e-~v' G}

® d controls the model sparsity,
® e the strength of relations between responses and predictors,

® G is an adjacency matrix of the structure prior knowledge.

Y1 Y21 Y31 Y12 Y22 Y32 13 Y23 Y33

Y11 /0 0 0 0 0 0 0 0 0
yml0O 11 0 1 1 0 0 0
vyl O 1 1 0 1 1 0 0 0
mz2| 0 0 0 0o 0 o0 o0 0 O
G= |0 1 1 0o 1 1 0 o0 o
vl 0 1 1 0 1 1 0 0 0
3| O 0 0 0 0 0 1 0 0
v23 | O 0 0 0 0 0 0 0 0
33 \ 0 0 0 o o0 o0 o0 0 O



(3) Make use of correlations in the data:
between input variables - to restrict the model space

Application to Genomics of Drug Sensitivity in Cancer data

® Same data as before, but now only use m = 7 cancer drugs

Methotrexate
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\\‘\ /,/\
i e\
AZD6244 CI-1040



(3) Make use of correlations in the data:
between input variables - to restrict the model space

Results (I'): Which covariates are important?

RASMUT BCR_ABL MUT N ib
T

FGFR®.CNV

Al ib

Fig: Important covariates related to the MEK inhibitors (left) or Ber-Abl
inhibitors (right) based on threshold for posterior marginal inclusion
probabilities (mPIP > 0.5).



(3) Make use of correlations in the data:
between response variables - to borrow information

(Multi-response) Tree-guided group lasso (Kim & Xing 2012)

® Include dependencies between columns of Y in a group lasso

® Extension to IPF-tree lasso

p
Tree lasso: pen(B) = )\Z Z wu||BjG”H£2

.j:]- Ve{vint:vleaf}

DA (Z >, wlBy @)

.js VG{ Vintavleaf}

IPF-tree lasso: pen(B

N

{Gw = {,Sjlsﬂj‘Z}J T hi’*”
]l;,‘ E
Drug sensitivi ty [qu = {ﬁj]}} [G,,g = {D’jZ}J [GM3 = {ﬂj,’;}] L i
(a) (®)




(3) Make use of correlations in the data:
between response variables - to borrow information

Drug screens for precision cancer medicine:

How to predict the drugs’ effect with data on drugs and tumour?

Original Article & OpenAccess € @ &

Structured penalized regression for drug sensitivity prediction

Zhi Zhao p%& Manuela Zucknick
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Model validation is crucial with small data

e Careful and correctly set up the model validation framework is even
more important with small data

* To avoid over-fitting when selecting tuning parameters or selecting
models

* To avoid being too optimistic when estimating prediction error

* Learning curve: How many samples are needed in the training set to
approach optimal model training?

* Nested cross-validation
* .632+ bootstrapping vs .632+ subsampling



Nested cross-validation

(" Internal validation
5 x 5-fold nested CV

TRAINING SET TEST
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from: Maros et al. (2020)




Learning curve:
How many samples are needed in the training data?
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