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Which model is best for prediction?

Example: Regularization/Variable selection by Lasso
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Measuring prediction performance
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To evaluate model performance on a given data set, measure how
well its predictions actually match the observed data.

How close is the predicted value to the true value for that
observation?

• Linear Regression: Mean squared error:

MSE =
1

n

n∑
i=1

(yi − ŷi )
2

• 2-class Classification: Brier score:

BS =
1

n

n∑
i=1

(yi − p̂(yi = 1|xi ))2
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Performance measures

Some models are used only for parameter estimation and testing

But:

• If used for prediction/classification, need to consider accuracy
of predictions

• Two major aspects of prediction accuracy that need to be
assessed:

(1) Reliability or calibration of a model:
• ability of the model to make unbiased estimates of the outcome
• observed responses agree with predicted responses

(2) Discrimination ability:
• the model is able, through the use of predicted responses, to

separate subjects
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Performance measures for classification tasks

Steyerberg et al, 2010 (Table 1)
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Example: Data challenge model performance evaluation

https://drive.hhs.gov/pediatric_challenge.html
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Example: Data challenge model performance evaluation
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Example: Data challenge model performance evaluation
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Example: Data challenge model performance evaluation

Quantitative score (85 %):

Qualitative score (15 %):

• Timeliness

• Interpretability

• Context Utility

• Technical Reproducibility

• Prediction Reproducibility
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How to estimate the performance measure

in an unbiased manner?
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How to estimate performance in an unbiased manner?

Need: Model assessment/validation to ascertain whether predicted
values from the model are likely to accurately predict responses on
future subjects or subjects not used to develop the model

Two modes of validation

• External:
Use different sets of subjects for building the model (including
tuning) and testing

• Internal:
(i) Apparent (or training) error: evaluate fit on same data
used to create fit
(ii) Data splitting and its extensions
(iii) Resampling methods
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• Two fundamental problems with estimation on the
training data:

• The final model will over-fit the training data. Problem is more
pronounced with models with a large number of variables.

• The error estimate will be overly optimistic (too low).

• A much better idea is to split the data into disjoint subsets
or use resampling methods

• Training error: Classification error in the training data set

• Generalisation error: Expected error for the classification of
new samples → This is what we want to estimate!

The training error is a bad estimator for the generalisation error!
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Over-fitting is a major problem
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Over-fitting is a major problem
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The Bias-Variance Trade-Off

• A simple model might have more model bias, but

• A complex model has more model variance.

For Y = f (X ) + ϵ with E (ϵ) = 0 and Var(ϵ) = σ2
ϵ , the expected

prediction error of f̂ (X ) at point x0 with squared error loss is:

from Hastie et al. (2009), chapter 7.3

17 MedBioInfo - Machine Learning Machine learning for small data 2



Prediction performance Sample splitting Resampling methods

The Bias-Variance Trade-Off

18 MedBioInfo - Machine Learning Machine learning for small data 2



Prediction performance Sample splitting Resampling methods

The danger for over-fitting is higher with complex models

Linear model

• Low complexity

• Stable (linear) decision boundary

• Generalisation error might be
hardly larger than the training
error

1-Nearest-neighbour method

• High complexity

• Unstable (highly non-linear)
decision boundary

• Large over-fitting likely:
Generalisation error probably
much larger than training error
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k-Nearest-neighbour method

Wikipedia.org

• k=3: Classify the test sample as a red triangle.

• k=5: Classify the test sample as a blue square.
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Model building, selection and assessment

1. How to decide which method is the “best”, i.e. has the
smallest generalisation error, in a specific situation?

2. And how large is that smallest generalisation error anyway?

• Model building and selection: For a variety of different
methods

1. Fit (“train”) the models,
i.e. perform parameter tuning/ variable selection

2. Estimate the prediction errors.
3. Choose the “best” method for a specific situation.

• Model assessment
• For the final selected model estimate the generalisation error

on new data.
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Sample splitting

→ Split data in several independent subsets before model
building.
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Sample splitting

In a data-rich situation, we can split the available data.

• Training set: Fit (“train”) the various prediction models
• Validation set:

• Estimate the prediction errors of the models
• Final model: Choose model with smallest prediction error

• Test set: Estimate the generalisation error by applying the
final model to a new test data set
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Sample splitting

Model building and selection →

→ Model assessment
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Drawbacks of sample splitting

One-time sample splitting has two basic drawbacks:

• We may not be able to afford the “luxury” of setting aside a
portion of the data set for testing, as it might result in a large
loss of power.

• The assessment can vary greatly when taking different splits:

Since it is a single train-and-test experiment, the estimate of
the error rate will be misleading if we happen to get an
“unfortunate” split.
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Resampling methods

→ Cross-validation

→ Bootstrapping
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Cross-validation

• Alternative to data splitting in not so data-rich situations (i.e.
most of the time...)

• Partition the data set into K roughly equal-sized subsets

• Each subset will be the test data set once, with the remaining
samples making up the training data

• Cross-validation error: The results are pooled from all test
sets to estimate the performance of the model (each case is
used exactly once).
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Cross-validation
• K -fold cross-validation

Validation samples

• Leave-one-out cross-validation

Single validation sample
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Nested cross-validation
• Inner CV loop: Model building and selection

• Feature selection, model selection, parameter tuning
• Choose the model with the smallest CV error within inner loop

• Outer CV loop: Model assessment
• Estimate the generalisation error for the final model
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K-fold cross-validation: Training set size bias
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Hypothetical learning curve:
The performance of the predictor improves as the training set size increases to
about 100 observations.

Increasing this number further brings only a small benefit.
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Drawbacks of cross-validation

• Leave-one-out CV: may have large variance

• K-fold CV: may have large bias, depending on the choice of
the number of observations to be held out from each fit. The

bias is possibly severe for training set sizes < 50, say. If the

learning curve has a considerable slope at the given training
set size, 5 or 10-fold CV will strongly overestimate the true
prediction error.

• Possible solution: estimate prediction error by bootstrapping
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