Hierarchical modeling

Manuela Zucknick and Theophilus Quachie Asenso
Oslo Centre for Biostatistics and Epidemiology

Contents

- Motivation and reason for hierarchical modeling
- Structure within responses
- Structure withing the covariates (Interaction models with hierarchical properties)
- Example with MADMMplasso

Motivation and reason for hierarchical modeling

Motivation and reason for hierarchical modeling

slide by Kjetil Taskén

Motivation and reason for hierarchical modeling

- Structures in the response matrix ([Kim and Xing, 2012], [Li et al., 2015]) for example correlations between drug responses due to similar chemical properties, drug target, drug functions, etc
- Structures within the covariates or with a set of modifying variables ([Li et al., 2015], [Tibshirani and Friedman, 2020]) for example gene-to-gene interactions, gene-to-cancer type interactions, correlated genes, etc

Motivation and reason for hierarchical modeling

How do we handle such problem?

- The response cannot be explained by only additive functions of the variables.
- There is the need to consider interactions

Structure within responses

Structure within responses (with tree lasso)

Structure within responses (with tree lasso)

- The set of internal and leaf nodes of the tree as $M_{\text {int }}, M_{\text {leaf }}$ of size $\left|M_{\text {int }}\right|$ and $\left|M_{\text {leaf }}\right|$ respectively;
- The group of responses forming an internal node $m \in M_{\text {int }}$ as \mathcal{G}_{m}, where $\mathcal{G}_{m} \subseteq\{1, \ldots, D\}$ and let $B_{j}^{\mathcal{G}_{m}}$ denotes the $j^{\text {th }}$ sub-vector of B, indexed by \mathcal{G}_{m} with a group weight w_{m}.
- Each sub-vector $B_{j}^{\mathcal{G}_{m}}$ has elements $\left\{B_{j d} ; d \in \mathcal{G}_{m}\right\}$.

Structure within responses (with tree lasso)

The simplified version of [Kim and Xing, 2012] is;

$$
\begin{equation*}
\min _{B} \frac{1}{2 N}\|Y-\hat{Y}\|_{F}^{2}+\lambda \sum_{j=1}^{p} \sum_{m \in M_{\text {int }}} w_{m}\left\|B_{j}^{\mathcal{G}_{m}}\right\|_{2}+\lambda \sum_{j=1}^{p} \sum_{m \in M_{\text {leaf }}} w_{m}\left\|B_{j}^{\mathcal{G}_{m}}\right\|_{2} \tag{1}
\end{equation*}
$$

Structure withing the covariates

Interaction models with hierarchical properties

Interaction models with hierarchical properties

The hierNet model [Bien et al., 2013]

$$
\begin{equation*}
y=\beta_{0}+\sum_{j}^{p} \beta_{j} x_{j}+\frac{1}{2} \sum_{j \neq k} \Theta_{j k} x_{j} X_{k}+\epsilon, \tag{2}
\end{equation*}
$$

where $\epsilon \sim \mathbb{N}\left(0, \sigma^{2}\right), \beta \in \mathbb{R}^{p}, \Theta \in \mathbb{R}^{p \times p}$ and $\Theta_{j j}=0$.

$$
\begin{equation*}
\left.\min _{\beta_{0} \in \mathbb{R}, \beta \pm \in \mathbb{R}^{p}, \Theta \in \mathbb{R} p \times p} \ell\left(\beta_{0}, \beta, \Theta\right)+\lambda \sum_{j} \max \left\{\left|\beta_{j}\right|,\left\|\Theta_{j}\right\|_{1}\right\}+\frac{\lambda}{2} \right\rvert\, \Theta \|_{1} \tag{3}
\end{equation*}
$$

Interaction models with hierarchical properties

Glinternet

Consider a dataset containing \mathbf{y} response and two categorical variables F_{1}, F_{2} with p_{1}, p_{2} levels. Let $\mathbf{X}_{1}, \mathbf{X}_{2}$ be their corresponding indicator matrices with p_{1}, p_{2} columns respectively.

Interaction models with hierarchical properties

The GLINTERNET model [Lim and Hastie, 2015]

$$
\begin{align*}
& \min _{\mu, \alpha, \tilde{\alpha}} \frac{1}{2}\left\|\mathbf{y}-\mathbf{1} \mu-\mathbf{X}_{1} \alpha_{1}-\mathbf{X}_{2} \alpha_{2}-\left[\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{1: 2}\right]\left[\begin{array}{c}
\tilde{\alpha}_{1} \\
\tilde{\alpha}_{2} \\
\alpha_{1: 2}
\end{array}\right]\right\|_{2}^{2} \\
&+\lambda\left(\left\|\alpha_{1}\right\|_{2}+\left\|\alpha_{2}\right\|_{2}+\sqrt{p_{1}\left\|\tilde{\alpha}_{1}\right\|_{2}^{2}+p_{2}\left\|\tilde{\alpha}_{2}\right\|_{2}^{2}+\left\|\alpha_{1: 2}\right\|_{2}^{2}}\right) \tag{4}
\end{align*}
$$

subject to $\quad \sum_{i=1}^{p_{1}} \alpha_{1}^{i}=0, \quad \sum_{j=1}^{p_{2}} \alpha_{2}^{j}=0, \quad, \sum_{i=1}^{p_{1}} \tilde{\alpha}_{1}^{j}=0, \quad \sum_{j=1}^{p_{2}} \tilde{\alpha}_{2}^{j}=0$
and $\quad \sum_{i=1}^{p_{1}} \alpha_{1: 2}^{i j}=0$ for fixed $j, \sum_{j=1}^{p_{2}} \alpha_{1: 2}^{i j}=0$ for fixed i,

Interaction models with hierarchical properties

The GLINTERNET model [Lim and Hastie, 2015]

GLINTERNET can be solved as an unconstrained group lasso problem by using the following equivalent objective function;

$$
\underset{\mu, \beta}{\operatorname{argmin}} \frac{1}{2}\left\|\mathbf{y}-\mathbf{1} \mu-\mathbf{X}_{1} \beta_{1}-\mathbf{X}_{2} \beta_{2}-\mathbf{X}_{1: 2} \beta_{1: 2}\right\|_{2}^{2}
$$

$$
\begin{equation*}
+\lambda\left(\left\|\beta_{1}\right\|_{2}+\left\|\beta_{2}\right\|_{2}+\left\|\beta_{1: 2}\right\|_{2}\right) \tag{7}
\end{equation*}
$$

Interaction models with hierarchical properties (Pliable lasso)
$y \in \mathbb{R}^{N}, X \in \mathbb{R}^{N \times p}$ and $Z \in \mathbb{R}^{N \times K}$. The pliable lasso [Tibshirani and Friedman, 2020] model is given as;

$$
\begin{align*}
\hat{y} & =\beta_{0} \mathbf{1}+Z \theta_{0}+\sum_{j=1}^{p} X_{j}\left(\beta_{j} \mathbf{1}+Z \theta_{j}\right) \\
& =\beta_{0}+Z \theta_{0}+X \beta+\sum_{j=1}^{p}\left(X_{j} \odot Z\right) \theta_{j} \tag{8}
\end{align*}
$$

where $\left(X_{j} \odot Z\right)$ denoting the $N \times K$ matrix formed by multiplying each column of Z component-wise by the column vector X_{j}.

Interaction models with hierarchical properties (Pliable lasso)

The pliable lasso objective function

$$
\begin{align*}
M\left(\beta_{0}, \theta_{0}, \beta, \theta\right)=\frac{1}{2 N} \sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} & \\
& +(1-\alpha) \lambda \sum_{j=1}^{p}(\overbrace{\left\|\left(\beta_{j}, \theta_{j}\right)\right\|_{2}+\left\|\theta_{j}\right\|_{2}}^{\text {Overlapping group }})+\alpha \lambda \sum_{j, k}\left|\theta_{j, k}\right| \tag{9}
\end{align*}
$$

- y_{i} is the element of the fitted model $\beta_{0} \mathbf{1}+Z \theta_{0}+\sum_{j=1}^{p} X_{j}\left(\beta_{j} \mathbf{1}+Z \theta_{j}\right)$.
- Overlapping group ensures (asymmetric) weak hierarchy constraint.

Interaction models with hierarchical properties

Table: Hierarchical Sparse modeling (HSM) methods

| Penalty | Input dataset | Method | Type of hierarchy |
| :---: | :---: | :---: | :---: | :---: |
| hiernet [Bien et al., 2013] | (x, y) | Group lasso | $\hat{\Theta}_{j k} \neq 0 \Rightarrow \hat{\beta}_{j} \neq 0$ and $\hat{\beta}_{k} \neq 0$
 $\hat{\Theta}_{j k} \neq 0 \Rightarrow \hat{\beta}_{j} \neq 0$ or $\hat{\beta}_{k} \neq 0$ |
| glinternet [Lim and Hastie, 2015] | (x, y) | Latent overlapping
 group lasso | $\hat{\Theta}_{j k} \neq 0 \Rightarrow \hat{\beta}_{j} \neq 0$ and $\hat{\beta}_{k} \neq 0$ |
| plasso [Tibshirani and Friedman, 2020] | (x, y, z) | group lasso with | $\hat{\Theta}_{j k}$ can be non zero only if |
| | | $\hat{\beta}_{j} \neq 0$. Converse not true | |
| | | | |

Example with MADMMplasso

Example with MADMMplasso

- Let $B \in \mathbb{R}^{D \times p \times(K+1)}$.
- The $j^{\text {th }}$ row of B_{d} defined as $B_{j d}=\left[\boldsymbol{\beta}_{j d}, \boldsymbol{\theta}_{j d}\right] \in \mathbb{R}^{K+1}$.
- Let W be an $N \times p \times(1+K)$

$$
\begin{align*}
& W_{i, j, k}=\left\{\begin{array}{lll}
X_{i j} Z_{i k} & \text { for } & k \neq 1 \\
X_{i j} & \text { for } & k=1
\end{array}\right. \tag{10}\\
& k=1,2, \ldots, K+1
\end{align*}
$$

where $W * B=\left[W * B_{1}: W * B_{2}: \ldots: W * B_{D}\right]$ to denote $N \times D$ matrix whose i, d element takes the form

$$
\begin{equation*}
(W * B)_{i d}=\sum_{j=1}^{p} \sum_{k=1}^{K+1} W_{i, j, k} B_{j k d}, \quad i=1,2, \ldots N, \quad d=1,2, \ldots, D \tag{12}
\end{equation*}
$$

Example with MADMMplasso

- $B \in \mathbb{R}^{D \times p \times(K+1)}$.

The general multi-response pliable lasso model can be written as

$$
\begin{align*}
\min _{B \in \mathbb{R}^{D \times p \times(1+K)}} & \frac{1}{2 N}\|Y-\hat{Y}\|_{F}^{2} \\
& +\sum_{d=1}^{D}\left[(1-\alpha) \lambda \sum_{j=1}^{p}\left(\left\|B_{j d}\right\|_{2}+\left\|B_{j(-1) d}\right\|_{2}\right)+\alpha \lambda \sum_{j=1}^{p}\left\|B_{j(-1) d}\right\|_{1}\right] \tag{13}
\end{align*}
$$

Example with MADMMplasso

Combining (13) and (1);

$$
\begin{align*}
& \min _{B \in \mathbb{R}^{D \times p \times(1+\kappa)}} \frac{1}{2 N}\|Y-\hat{Y}\|_{F}^{2}+\lambda_{1} \sum_{j=1}^{p} \sum_{m \in M_{\text {int }}} w_{m}\left\|B_{j}^{\mathcal{G}_{m}}\right\|_{2}+\lambda_{1} \sum_{j=1}^{p} \sum_{m \in M_{\text {leaf }}} w_{m}\left\|B_{j}^{\mathcal{G}_{m}}\right\|_{2} \\
&+\sum_{d=1}^{D}\left[(1-\alpha) \lambda_{2} \sum_{j=1}^{p}\left(\left\|B_{j d}\right\|_{2}+\left\|B_{j(-1) d}\right\|_{2}\right)+\alpha \lambda_{2} \sum_{j=1}^{p}\left\|B_{j(-1) d}\right\|_{1}\right] . \tag{14}
\end{align*}
$$

- We use ADMM [Boyd et al., 2011]: "The alternating direction method of multipliers (ADMM) is an algorithm that solves convex optimization problems by breaking them into smaller pieces, each of which are then easier to handle. It has recently found wide application in a number of areas." (https://stanford.edu/ boyd/admm.html)

Example with MADMMplasso: Introduction to ADMM

Given a separable objective function

$$
\begin{equation*}
\min _{\beta} f(\beta)+h(\beta), \tag{15}
\end{equation*}
$$

- Introduce auxiliary variable ω to solve (15) as

$$
\begin{equation*}
\min _{\beta, \omega} f(\beta)+h(\omega) \quad \text { s.t } \quad \beta=\omega \tag{16}
\end{equation*}
$$

The problem in (16) can have a corresponding augmented Lagrangian in the form

$$
\begin{equation*}
L(\beta, \omega, \gamma)=f(\beta)+h(\omega)+\gamma(\beta-\omega)+(\rho / 2)\|\beta-\omega\|_{2}^{2} \tag{17}
\end{equation*}
$$

Example with MADMMplasso : Introduction to ADMM

The ADMM algorithm updates β and ω in an alternating or sequential manner in the following way until convergence condition is met.

$$
\begin{align*}
& \beta^{t+1}=\underset{\beta}{\arg \min } L\left(\beta, \omega^{t}, \gamma^{t}\right) \\
& \omega^{t+1}=\underset{\omega}{\arg \min } L\left(\beta^{t+1}, \omega, \gamma^{t}\right) \tag{18}\\
& \gamma^{t+1}=\gamma^{t}+\rho\left(\beta^{t+1}-\omega^{t+1}\right) .
\end{align*}
$$

Example with MADMMplasso

$\mathcal{L}(B, E, E E, V, Q, H, H H, O, P)=\frac{1}{2 N}\|Y-\hat{Y}\|_{F}^{2}+$

$$
\lambda_{1} \sum_{j=1}^{p} \sum_{m \in M_{\text {int }}} w_{m}\left\|E_{j}^{\mathcal{G}_{m}}\right\|_{2}+\lambda_{1} \sum_{d} \sum_{j=1}^{p} w_{d}\left\|E E_{j d}\right\|_{2}
$$

$$
+\sum_{d}(1-\alpha) \lambda_{2} \sum_{j=1}^{p} \sum_{s}\left\|V_{j d}^{s}\right\|_{2}+\alpha \lambda_{2} \sum_{j=1}^{p}\left\|\mathbf{Q}_{j d}\right\|_{1}+\sum_{j} \mathbf{H}_{j}\left(\tilde{\tilde{B}}_{j}-\mathbf{E}_{j}\right)^{T}+\sum_{d}\left\langle H H_{d}, B_{d}-E E_{d}\right\rangle
$$

$$
+\sum_{d} \sum_{j} O_{j d}\left(\tilde{B}_{j d}-V_{j d}\right)^{T}+\sum_{d}\left\langle\mathbf{P}_{d}, B_{d}-\mathbf{Q}_{d}\right\rangle
$$

$$
\begin{equation*}
+\frac{\rho}{2} \sum_{j}\left\|\tilde{B}_{j}-\mathbf{E}_{j}\right\|_{2}^{2}+\frac{\rho}{2} \sum_{d}\left\|B_{d}-E E_{d}\right\|_{2}^{2}+\frac{\rho}{2} \sum_{d} \sum_{j}\left\|\tilde{B}_{j d}-\mathbf{V}_{j d}\right\|_{2}^{2}+\frac{\rho}{2} \sum_{d}\left\|B_{d}-\mathbf{Q}_{d}\right\|_{2}^{2} \tag{19}
\end{equation*}
$$

Example with MADMMplasso

$$
D=7, p=500, K=4, N=100 \quad D=24, p=150,500, K=4, N=100
$$

hclust (*, "complete")
hclust (*), "complete")
Simulated correlation structure of D drug response variables across N cell lines for simulated data set 1 (left) and 2 (right)."

Example with MADMMplasso: Results for simulated data set 1

Table: Results from the simulated data 1 without strong hierarchical structure in the response

Model	$(1 / D p)\\|\hat{\beta}-\beta\\|_{1}$	Sensitivity	Specificity	Non-zero coefficient	Test error
Plasso	0.019	1	0.916	278	17.967
Tree lasso	0.071	1	0.618	1164	33.351
MADMMplasso	0.006	1	0.954	166	5.211

${ }^{1}$ Non zero Coefficient is the non zero main effects out of $p \times D=500 \times 7=3500$.
${ }^{2}$ Test error is MSE in independent test data set.

Example with MADMMplasso: Results for simulated data set 2

Example with MADMMplasso: Results for simulated data set 2

Table: Results from the simulated data 2 with strong hierarchical structure in the response

Model	$(1 / D p)\\|\hat{\beta}-\beta\\|_{1}$	Sensitivity	Specificity	Non-zero coefficient	Test error
$p=150$					
Plasso	0.034	0.972	0.801	994	2.245
Tree lasso	0.037	0.988	0.758	1137	2.147
MADMMplasso	0.030	0.988	0.780	1068	2.018
$p=500$					
Plasso	0.015	0.827	0.912	1314	5.934
Tree lasso	0.022	0.981	0.784	2865	2.691
MADMMplasso	0.011	0.986	0.896	1562	2.055

${ }^{1}$ Non zero Coefficient is the non zero main effects out of $p \times D=150 \times 24=3600$ or $500 \times 24=$ 12000.
${ }^{2}$ Test error is MSE in independent test data set.

Example with MADMMplasso: Real data

'Genomics of drug sensitivity in cancer' [Garnett et al., 2012]

- Large-scale pharmacogenomic study with $N=498$ cell lines and $D=97$ drugs (we used 7 drugs).
- Outcome data: $\log \left(I C_{50}\right)$ from dose-response experiments
- Random draws of 80% cell lines as training data and 20% as validation data.
- Input data: Z as cancer types (13 cancer types, $K=12$), X as mRNA expression ($p=2602$)

Example with MADMMplasso: Real data: Drug information

- PD-0325901, RDEA119, CI-1040, AZD6244: MEK1 inhibitors with highly correlated IC50 values.
- Methotrexate: general cytotoxic drug not targeted to specific genes/pathways
- Nilotinib: inhibits the BCR-ABL fusion gene characteristic for chronic myeloid leukemia. Related to Axitinib (smaller effect)

Example with MADMMplasso: Real data

e Correlation structure of 7 drug response variables across 400 cell lines

f Test error

Example with MADMMplasso: Real data

GDSC [Garnett et al., 2012]

Table: Results from the GDSC data

Model	Non zero coefficient	Test error
$p=2602$		
Plasso	351	3.868
Tree lasso	603	3.438
MADMMplasso	756	3.342

${ }^{1}$ Non zero Coefficient is the non zero main effects out of $p \times D=2602 \times 7=18214$.
${ }^{2}$ Test error is MSE in independent test data set.

Example with MADMMplasso: Real data : Selected interaction effects for Nilotinib

Suppressor of cytokine signaling 2 (SOCS2) is involved in the signal transduction cascades in CML cells [Schultheis et al., 2002]

Example with MADMMplasso: Real data: Summary of all selected interaction effects

GDSC [Garnett et al., 2012]

Summary

- We have considered problems with hierarchical structures.
- The model involved main and interaction effects.
- The response cannot be explained by additive functions of the variables hence the need for hierarchical modeling.
- The procedure involved the implementation of the pliable lasso penalty.
- Our extensions
- Multi-response problem with tree-guided structure.
- The implementation of the ADMM algorithm made it possible to handle the overlapping groups in both the covariates and the responses.
- The R package (MADMMplasso) is publicly available on https://github.com/ocbe-uio/MADMMplasso

Email: t.q.asenso@medisin.uio.no

This work received funding from the European Union's Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Actions Grant, agreement No. 80113 (Scientia fellowship)

References I

Bien, J., Taylor, J., and Tibshirani, R. (2013).
A lasso for hierarchical interactions.
The Annals of Statistics, 41(3):1111-1141.
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).
Distributed optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends $®$ in Machine learning, 3(1):1-122.
Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau, K. W., Greninger, P., Thompson, I. R., Luo, X., Soares, J., et al. (2012).

Systematic identification of genomic markers of drug sensitivity in cancer cells.
Nature, 483(7391):570-575.

References II

Kim, S. and Xing, E. P. (2012).
Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eqtl mapping.
The Annals of Applied Statistics, 6(3):1095-1117.
Li, Y., Nan, B., and Zhu, J. (2015).
Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

Biometrics, 71(2):354-363.
Lim, M. and Hastie, T. (2015).
Learning interactions via hierarchical group-lasso regularization.
Journal of Computational and Graphical Statistics, 24(3):627-654.
PMID: 26759522.

References III

Schultheis, B., Carapeti-Marootian, M., Hochhaus, A., Weisser, A., Goldman, J. M., and Melo, J. V. (2002).

Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism.
Blood, 99(5):1766-1775.
Tibshirani, R. and Friedman, J. (2020).
A pliable lasso.
Journal of Computational and Graphical Statistics, 29(1):215-225.

THANK YOU

