The Arcsine confidence interval for the binomial probability (with Anscombe variance stabilizing transformation) Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Arcsine_CI_1x2(X, n, alpha = 0.05)

Arguments

X

the number of successes

n

the total number of observations

alpha

the nominal level, e.g. 0.05 for 95% CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Anscombe FJ (1948) The transformation of Poisson, binomial and negative binomial data. Biometrika; 35:246-254

Examples

Arcsine_CI_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"])
#> The arcsine CI: estimate = 0.4690 (95% CI 0.4269 to 0.5115)
Arcsine_CI_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
#> The arcsine CI: estimate = 0.4951 (95% CI 0.4470 to 0.5434)
Arcsine_CI_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
#> The arcsine CI: estimate = 0.6168 (95% CI 0.5414 to 0.6884)
with(singh_2010["4th", ], Arcsine_CI_1x2(X, n)) # alternative syntax
#> The arcsine CI: estimate = 0.7333 (95% CI 0.5918 to 0.8477)
Arcsine_CI_1x2(ligarden_2010["X"], ligarden_2010["n"])
#> The arcsine CI: estimate = 0.8125 (95% CI 0.5746 to 0.9522)