The Clopper-Pearson exact confidence interval for the binomial probability

(defined via the beta distribution)

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

ClopperPearson_exact_CI_1x2_beta_version(X, n, alpha = 0.05)

Arguments

X

the number of successes

n

the total number of observations

alpha

the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

References

Brown LD, Cai T, DasGupta A (2001) Interval estimation for a binomial proportion. Statistical Science; 16:101-133

See also

ClopperPearson_exact_CI_1x2

Examples

ClopperPearson_exact_CI_1x2_beta_version(singh_2010["1st", "X"], singh_2010["1st", "n"])
#> The Clopper Pearson exact CI: estimate = 0.4690 (95% CI 0.4260 to 0.5124)
ClopperPearson_exact_CI_1x2_beta_version(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
#> The Clopper Pearson exact CI: estimate = 0.4951 (95% CI 0.4458 to 0.5445)
ClopperPearson_exact_CI_1x2_beta_version(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
#> The Clopper Pearson exact CI: estimate = 0.6168 (95% CI 0.5385 to 0.6908)
with(singh_2010["4th", ], ClopperPearson_exact_CI_1x2_beta_version(X, n)) # alternative syntax
#> The Clopper Pearson exact CI: estimate = 0.7333 (95% CI 0.5806 to 0.8540)
ClopperPearson_exact_CI_1x2_beta_version(ligarden_2010["X"], ligarden_2010["n"])
#> The Clopper Pearson exact CI: estimate = 0.8125 (95% CI 0.5435 to 0.9595)