R/Cumulative_models_for_2xc.R
Cumulative_models_for_2xc.Rd
Cumulative logit and probit models
Described in Chapter 6 "The Ordered 2xc Table"
Cumulative_models_for_2xc(n, linkfunction = "logit", alpha = 0.05)
An object of the contingencytables_result class,
basically a subclass of base::list()
. Use the utils::str()
function
to see the specific elements returned.
Cumulative_models_for_2xc(fontanella_2008)
#>
#> Testing the fit of a proportional odds model
#> Pearson goodness of fit: P = 0.02368, X2 = 7.487 (df=2)
#> Likelihodd ratio (deviance): P = 0.02157, D = 7.673 (df=2)
#>
#> Testing the effect in a proportional odds model
#> Wald (Z-statistic): P = 0.00000, Z = 6.738
#> Likelihood ratio: P = 0.00000, T = 47.158 (df=1)
#> Score (WMW): P = 0.00000, Z = 6.783
#>
#> Estimation of the effect parameter beta with 95% CIs
#> in the proportional odds model
#> ----------------------------------------------------
#> Interval Estimate Conf. int Width
#> ----------------------------------------------------
#> Wald 1.145 0.812 to 1.478 0.6662
#> Wald (OR) 0.318 0.228 to 0.444
#> ----------------------------------------------------
Cumulative_models_for_2xc(lydersen_2012a)
#>
#> Testing the fit of a proportional odds model
#> Pearson goodness of fit: P = 0.43208, X2 = 1.678 (df=2)
#> Likelihodd ratio (deviance): P = 0.42391, D = 1.716 (df=2)
#>
#> Testing the effect in a proportional odds model
#> Wald (Z-statistic): P = 0.14097, Z = -1.472
#> Likelihood ratio: P = 0.13823, T = 2.198 (df=1)
#> Score (WMW): P = 0.14421, Z = -1.460
#>
#> Estimation of the effect parameter beta with 95% CIs
#> in the proportional odds model
#> ----------------------------------------------------
#> Interval Estimate Conf. int Width
#> ----------------------------------------------------
#> Wald -0.716 -1.668 to 0.237 1.9053
#> Wald (OR) 2.045 0.789 to 5.303
#> ----------------------------------------------------