H_0 pi = pi0 vs H_A: pi ~= pi0 (two-sided)

Described in Chapter 2 "The 1x2 Table and the Binomial Distribution"

Exact_binomial_test_1x2(X, n, pi0)

Arguments

X

the number of successes

n

the total number of observations

pi0

a given probability

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

Exact_binomial_test_1x2(singh_2010["1st", "X"], singh_2010["1st", "n"], pi0 = 0.513)
#> The exact binomial test: P = 0.04694
Exact_binomial_test_1x2(singh_2010["2nd", "X"], singh_2010["2nd", "n"], pi0 = 0.513)
#> The exact binomial test: P = 0.49909
Exact_binomial_test_1x2(singh_2010["3rd", "X"], singh_2010["3rd", "n"], pi0 = 0.513)
#> The exact binomial test: P = 0.00887
Exact_binomial_test_1x2(singh_2010["4th", "X"], singh_2010["4th", "n"], pi0 = 0.513)
#> The exact binomial test: P = 0.00429
Exact_binomial_test_1x2(ligarden_2010["X"], ligarden_2010["n"], pi0 = 0.5)
#> The exact binomial test: P = 0.02127