The Goodman Wald simultaneous intervals for the multinomial probabilities

(with Bonferroni adjustment)

Described in Chapter 3 "The 1xc Table and the Multinomial Distribution"

Goodman_Wald_CIs_1xc(n, alpha = 0.05)

Arguments

n

the observed counts (a 1xc vector, where c is the number of categories)

alpha

the nominal level, e.g. 0.05 for 95# CIs

Value

An object of the contingencytables_result class, basically a subclass of base::list(). Use the utils::str() function to see the specific elements returned.

Examples

Goodman_Wald_CIs_1xc(n = snp6498169$complete$n)
#> The Goodman Wald simultaneous intervals
#>    pi_1: estimate = 0.3566 (0.3154 to 0.3978)
#>    pi_2: estimate = 0.4910 (0.4479 to 0.5340)
#>    pi_3: estimate = 0.1525 (0.1215 to 0.1834)