The 1x2 Table CIs

the_1x2_table_CIs(X, n, alpha = 0.05)

Arguments

X

the number of successes

n

the total number of observations

alpha

the nominal level, e.g. 0.05 for 95% CIs

Value

NULL. This function should be called for its printed output

Examples

# The number of 1st order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["1st", "X"], singh_2010["1st", "n"])
#> Estimate of pi: 250 / 533 = 0.469
#>  
#> Interval method                  95% CI        width 
#> ---------------------------------------------------- 
#> Wald                         0.427 to 0.511    0.085 
#> Wald with CC                 0.426 to 0.512    0.087 
#> Likelihood ratio             0.427 to 0.511    0.085 
#> Wilson score                 0.427 to 0.511    0.084 
#> Wilson score with CC         0.426 to 0.512    0.086 
#> Agresti-Coull                0.427 to 0.511    0.084 
#> Jeffreys                     0.427 to 0.511    0.085 
#> Arcsine (Anscombe)           0.427 to 0.512    0.085 
#> Clopper-Pearson exact        0.426 to 0.512    0.086 
#> Blaker exact                 0.427 to 0.512    0.086 
#> Clopper-Pearson mid-p        0.427 to 0.512    0.085 
#> Blaker mid-P                 0.427 to 0.511    0.085 
#> ---------------------------------------------------- 
#> CC = continuity correction 
# The number of 2nd order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["2nd", "X"], singh_2010["2nd", "n"])
#> Estimate of pi: 204 / 412 = 0.495
#>  
#> Interval method                  95% CI        width 
#> ---------------------------------------------------- 
#> Wald                         0.447 to 0.543    0.097 
#> Wald with CC                 0.446 to 0.545    0.099 
#> Likelihood ratio             0.447 to 0.543    0.096 
#> Wilson score                 0.447 to 0.543    0.096 
#> Wilson score with CC         0.446 to 0.544    0.099 
#> Agresti-Coull                0.447 to 0.543    0.096 
#> Jeffreys                     0.447 to 0.543    0.096 
#> Arcsine (Anscombe)           0.447 to 0.543    0.096 
#> Clopper-Pearson exact        0.446 to 0.545    0.099 
#> Blaker exact                 0.446 to 0.544    0.097 
#> Clopper-Pearson mid-p        0.447 to 0.543    0.096 
#> Blaker mid-P                 0.446 to 0.544    0.097 
#> ---------------------------------------------------- 
#> CC = continuity correction 
# The number of 3rd order male births (Singh et al. 2010)
the_1x2_table_CIs(singh_2010["3rd", "X"], singh_2010["3rd", "n"])
#> Estimate of pi: 103 / 167 = 0.617
#>  
#> Interval method                  95% CI        width 
#> ---------------------------------------------------- 
#> Wald                         0.543 to 0.691    0.147 
#> Wald with CC                 0.540 to 0.693    0.153 
#> Likelihood ratio             0.542 to 0.688    0.147 
#> Wilson score                 0.541 to 0.687    0.146 
#> Wilson score with CC         0.538 to 0.690    0.152 
#> Agresti-Coull                0.541 to 0.687    0.146 
#> Jeffreys                     0.542 to 0.688    0.146 
#> Arcsine (Anscombe)           0.541 to 0.688    0.147 
#> Clopper-Pearson exact        0.538 to 0.691    0.152 
#> Blaker exact                 0.539 to 0.690    0.151 
#> Clopper-Pearson mid-p        0.541 to 0.688    0.147 
#> Blaker mid-P                 0.542 to 0.687    0.144 
#> ---------------------------------------------------- 
#> CC = continuity correction 
# The number of 4th order male births (Singh et al. 2010)
with(singh_2010["4th", ], the_1x2_table_CIs(X, n)) # alternative syntax
#> Estimate of pi: 33 / 45 = 0.733
#>  
#> Interval method                  95% CI        width 
#> ---------------------------------------------------- 
#> Wald                         0.604 to 0.863    0.258 
#> Wald with CC                 0.593 to 0.874    0.281 
#> Likelihood ratio             0.594 to 0.847    0.254 
#> Wilson score                 0.590 to 0.840    0.251 
#> Wilson score with CC         0.578 to 0.849    0.271 
#> Agresti-Coull                0.588 to 0.841    0.253 
#> Jeffreys                     0.593 to 0.845    0.253 
#> Arcsine (Anscombe)           0.592 to 0.848    0.256 
#> Clopper-Pearson exact        0.581 to 0.854    0.273 
#> Blaker exact                 0.589 to 0.852    0.263 
#> Clopper-Pearson mid-p        0.591 to 0.847    0.256 
#> Blaker mid-P                 0.590 to 0.843    0.252 
#> ---------------------------------------------------- 
#> CC = continuity correction 
# Ligarden et al. (2010)
the_1x2_table_CIs(ligarden_2010["X"], ligarden_2010["n"])
#> Estimate of pi: 13 / 16 = 0.812
#>  
#> Interval method                  95% CI        width 
#> ---------------------------------------------------- 
#> Wald                         0.621 to 1.000    0.379 
#> Wald with CC                 0.590 to 1.000    0.410 
#> Likelihood ratio             0.583 to 0.950    0.367 
#> Wilson score                 0.570 to 0.934    0.364 
#> Wilson score with CC         0.537 to 0.950    0.413 
#> Agresti-Coull                0.560 to 0.940    0.380 
#> Jeffreys                     0.579 to 0.944    0.365 
#> Arcsine (Anscombe)           0.575 to 0.952    0.378 
#> Clopper-Pearson exact        0.544 to 0.960    0.416 
#> Blaker exact                 0.566 to 0.947    0.381 
#> Clopper-Pearson mid-p        0.570 to 0.950    0.380 
#> Blaker mid-P                 0.566 to 0.935    0.369 
#> ---------------------------------------------------- 
#> CC = continuity correction