Wrapper for _test_2x2 functions on Chapter 4.

the_2x2_table_tests(n, gamma = 1e-04)

Arguments

n

frequency matrix

gamma

parameter for the Berger and Boos procedure

Value

NULL. This function should be called for its printed output

Table orientation

In most study designs, rows designate a grouping of the data, for instance, into treatment or exposure groups, while the columns indicate a dichotomous outcome, usually with the first column representing the outcome of interest. This designation of rows and columns may not be relevant in all study designs, please see the introduction to chapter 4 for details.

Examples

# Example: A lady tasting a cup of tea
the_2x2_table_tests(tea)
#> H_0: pi_1 = pi_2  vs  H_A: pi_1 = / = pi_2
#> Estimate of pi_1: 3 / 4 = 0.750
#> Estimate of pi_2: 1 / 4 = 0.250
#> 
#> Test                                  P-value  (test statistic)
#> ------------------------------------------------------------------
#> Pearson chi-squared                     0.1573 (T = 2.000, df = 1)
#> Pearson chi-squared w / CC              0.4795 (T = 0.500, df = 1)
#> Likelihood ratio                        0.1480 (T = 2.093, df = 1)
#> Fisher exact test (Fisher-Irwin)        0.4857
#> Fisher exact test (Pearson)             0.4857
#> Fisher exact test (LR)                  0.2571
#> Fisher mid-P test (Fisher-Irwin)        0.2571
#> Suissa-Shuster exact uncond.*           0.2892
#> Exact uncond. w / LR statistic*         0.2267
#> Exact uncond. w / unpooled Z statistic* 0.2892
#> Fisher-Boschloo exact uncond.*          0.2892
#> ------------------------------------------------------------------
#>  * gamma = 0.0001    

# Example: Lampasona et al. (2013)
the_2x2_table_tests(lampasona_2013)
#> H_0: pi_1 = pi_2  vs  H_A: pi_1 = / = pi_2
#> Estimate of pi_1: 9 / 13 = 0.692
#> Estimate of pi_2: 4 / 14 = 0.286
#> 
#> Test                                  P-value  (test statistic)
#> ------------------------------------------------------------------
#> Pearson chi-squared                     0.0346 (T = 4.464, df = 1)
#> Pearson chi-squared w / CC              0.0841 (T = 2.984, df = 1)
#> Likelihood ratio                        0.0321 (T = 4.593, df = 1)
#> Fisher exact test (Fisher-Irwin)        0.0570
#> Fisher exact test (Pearson)             0.0570
#> Fisher exact test (LR)                  0.0570
#> Fisher mid-P test (Fisher-Irwin)        0.0391
#> Suissa-Shuster exact uncond.*           0.0524
#> Exact uncond. w / LR statistic*         0.0556
#> Exact uncond. w / unpooled Z statistic* 0.0460
#> Fisher-Boschloo exact uncond.*          0.0524
#> ------------------------------------------------------------------
#>  * gamma = 0.0001    

if (FALSE) { # \dontrun{
  the_2x2_table_tests(perondi_2004) # Example: Perondi et al. (2004)
  the_2x2_table_tests(ritland_2007) # Example: Ritland et al. (2007)
} # }