The rx2 table
the_rx2_table(n, alpha = 0.05, direction = "increasing", skip_exact = FALSE)
NULL. This function should be called for its printed output.
the_rx2_table(mills_graubard_1987, skip_exact = TRUE)
#> Method Statistic P-value
#> -------------------------------------------------------
#> Tests for unordered alternatives
#> Pearson chi-squared 12.082 (df=4) 0.01675
#> Likelihood ratio 6.202 (df=4) 0.18456
#> Tests for ordered alternatives
#> Pearson chi-squared 11.988 (chibar) 0.00171
#> Likelihood ratio 6.103 (chibar) 0.02990
#> Tests for trend in the linear model
#> Cochran-Armitage 1.352 0.17639
#> Modified Cochran-Armitage 1.061 0.28868
#> Mantel-Haenszel 1.352 0.17638
#> Wald 0.956 0.33909
#> Likelihood ratio 1.268 (df=1) 0.26007
#> Testing the fit of the linear model
#> Pearson goodness-of-fit 7.313 (df=3) 0.06256
#> Likelihood ratio (deviance) 4.934 (df=3) 0.17672
#> Tests for trend in the logit model
#> Wald 1.353 0.17600
#> Likelihood ratio 1.755 (df=1) 0.18529
#> Testing the fit of the logit model
#> Pearson goodness-of-fit 5.682 (df=3) 0.12812
#> Likelihood ratio (deviance) 4.447 (df=3) 0.21704
#> -------------------------------------------------------
#> Method Estimate 95% CI Width
#> ----------------------------------------------------------------
#> Linear model
#> Cochran-Armitage CI 0.00069 -0.00058 to 0.00196 0.0025
#> Wald CI 0.00050 -0.00053 to 0.00154 0.0021
#> Logit model
#> Wald CI 0.22780 -0.10215 to 0.55776 0.6599
#> ----------------------------------------------------------------
the_rx2_table(indredavik_2008, direction = "decreasing", skip_exact = TRUE)
#> Method Statistic P-value
#> -------------------------------------------------------
#> Tests for unordered alternatives
#> Pearson chi-squared 13.490 (df=4) 0.00912
#> Likelihood ratio 14.625 (df=4) 0.00555
#> Tests for ordered alternatives
#> Pearson chi-squared 9.509 (chibar) 0.00571
#> Likelihood ratio 11.192 (chibar) 0.00252
#> Tests for trend in the linear model
#> Cochran-Armitage -1.788 0.07381
#> Modified Cochran-Armitage -1.894 0.05820
#> Mantel-Haenszel -1.790 0.07351
#> Wald -2.170 0.03003
#> Likelihood ratio 3.858 (df=1) 0.04952
#> Testing the fit of the linear model
#> Pearson goodness-of-fit 11.470 (df=3) 0.00944
#> Likelihood ratio (deviance) 10.767 (df=3) 0.01305
#> Tests for trend in the logit model
#> Wald -1.777 0.07549
#> Likelihood ratio 3.124 (df=1) 0.07715
#> Testing the fit of the logit model
#> Pearson goodness-of-fit 11.889 (df=3) 0.00777
#> Likelihood ratio (deviance) 11.501 (df=3) 0.00930
#> -------------------------------------------------------
#> Method Estimate 95% CI Width
#> ----------------------------------------------------------------
#> Linear model
#> Cochran-Armitage CI -0.01942 -0.03952 to 0.00067 0.0402
#> Wald CI -0.02405 -0.04578 to -0.00232 0.0435
#> Logit model
#> Wald CI -0.18280 -0.38436 to 0.01877 0.4031
#> ----------------------------------------------------------------