The rxc table

the_rxc_table(n, alpha = 0.05, nboot = 10000)

Arguments

n

the total number of observations

alpha

the nominal level, e.g. 0.05 for 95% CIs

nboot

number of boostrap samples. If 0, skips tests that use bootstrapping

Value

NULL. This function should be called for its printed output.

Examples

set.seed(8047)
# Unordered tables

## Treatment for ear infection (van Balen et al., 2003)
the_rxc_table(table_7.3, nboot = 200)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      17.562 (df=2)   0.000154
#>   Likelihood ratio                        16.700 (df=2)   0.000236
#>   Fisher-Freeman-Halton asymptotic        16.260 (df=2)   0.000295
#>   Fisher-Freeman-Halton exact conditional                 0.000271
#>   Fisher-Freeman-Halton mid-P                             0.000267
#>   Pearson exact conditional                               0.000155
#>   Pearson mid-P                                           0.000151
#>   Likelihood ratio exact conditional                      0.000303
#>   Likelihood ratio mid-P                                  0.000299
#> -------------------------------------------------------------------
#> Pearson residuals:
#>            [,1]      [,2]
#> [1,] -1.5753727  3.045850
#> [2,]  0.8467851 -1.637187
#> [3,]  0.7124830 -1.377526
#> 
#> Standardized Pearson residuals:
#>           [,1]      [,2]
#> [1,] -4.178875  4.178875
#> [2,]  2.213411 -2.213411
#> [3,]  1.949026 -1.949026
#> 
#> The Scheffe-type simultaneous intervals
#>   pi_1|1 - pi_1|2: estimate = -0.2699 (-0.4482 to -0.0916)
#>   pi_1|1 - pi_1|3: estimate = -0.2476 (-0.4252 to -0.0701)
#>   pi_1|2 - pi_1|3: estimate = 0.0222 (-0.1181 to 0.1625)
#> 
#> The Bonferroni-type simultaneous intervals
#>   pi_1|1 - pi_1|2: estimate = -0.2699 (-0.4443 to -0.0955)
#>   pi_1|1 - pi_1|3: estimate = -0.2476 (-0.4213 to -0.0740)
#>   pi_1|2 - pi_1|3: estimate = 0.0222 (-0.1150 to 0.1594)
#>   pi_1|3 - pi_1|3: estimate = 0.0000 (-0.1362 to 0.1362)
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic               17.473 (df=2)   0.000161
#>   Kruskal-Wallis exact conditional                        0.000155
#>   Kruskal-Wallis mid-P                                    0.000151
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                         -3.477     0.000508
#>   Jonckheere-Terpstra                      -3.437     0.000589
#>   Linear-by-linear exact conditional                  0.000155
#>   Linear-by-linear mid-P                              0.000151
#>   Jonckheere-Terpstra exact conditional               0.000155
#>   Jonckheere-Terpstra mid-P                           0.000151
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient           -0.247 (95% CI -0.373 to -0.112)
#> Pearson correlation w / BCa bootstrap CI    -0.247 (95% CI -0.389 to -0.097), nboot = 200
#> 
#> Spearman correlation w / Fieller CI         -0.244 (95% CI -0.378 to -0.101)
#> Spearman correlation w / Bonett-Wright CI   -0.244 (95% CI -0.373 to -0.107)
#> Spearman correlation w / BCa bootstrap CI   -0.244 (95% CI -0.425 to -0.117), nboot = 200
#> 
#> The gamma coefficient                     -0.468
#> The gamma coefficient w / BCa bootstrap CI  -0.468 (95% CI -0.686 to -0.221), nboot = 200
#> 
#> Kendalls tau-b w / Fieller CI              -0.230 (95% CI -0.316 to -0.141)
#> Kendalls tau-b w / BCa bootstrap CI        -0.230 (95% CI -0.367 to -0.094), nboot = 200
#> -----------------------------------------------------------------------------------------

## Psychiatric diagnoses vs PA (Mangerud et al., 2004)
the_rxc_table(table_7.4, nboot = 0)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      11.687 (df=5)   0.039338
#>   Likelihood ratio                        11.851 (df=5)   0.036885
#>   Fisher-Freeman-Halton asymptotic        11.542 (df=5)   0.041633
#> -------------------------------------------------------------------
#> Pearson residuals:
#>             [,1]        [,2]
#> [1,]  0.90342075 -1.27588328
#> [2,]  0.04289348 -0.06057761
#> [3,] -1.21560402  1.71677356
#> [4,]  1.07887352 -1.52367176
#> [5,] -0.66563137  0.94005804
#> [6,]  0.00532264 -0.00751706
#> 
#> Standardized Pearson residuals:
#>              [,1]         [,2]
#> [1,]  1.697143624 -1.697143624
#> [2,]  0.086555318 -0.086555318
#> [3,] -2.147109879  2.147109879
#> [4,]  1.933370535 -1.933370535
#> [5,] -1.466663369  1.466663369
#> [6,]  0.009671725 -0.009671725
#> 
#> The Scheffe-type simultaneous intervals
#>   pi_1|1 - pi_1|2: estimate = 0.0780 (-0.1272 to 0.2832)
#>   pi_1|1 - pi_1|3: estimate = 0.2924 (-0.0948 to 0.6797)
#>   pi_1|1 - pi_1|4: estimate = -0.0638 (-0.3305 to 0.2028)
#>   pi_1|1 - pi_1|5: estimate = 0.1184 (-0.0753 to 0.3121)
#>   pi_1|1 - pi_1|6: estimate = 0.0803 (-0.1907 to 0.3513)
#>   pi_1|2 - pi_1|3: estimate = 0.2144 (-0.1620 to 0.5908)
#>   pi_1|2 - pi_1|4: estimate = -0.1418 (-0.3925 to 0.1088)
#>   pi_1|2 - pi_1|5: estimate = 0.0404 (-0.1305 to 0.2113)
#>   pi_1|2 - pi_1|6: estimate = 0.0023 (-0.2529 to 0.2575)
#>   pi_1|3 - pi_1|4: estimate = -0.3563 (-0.7694 to 0.0568)
#>   pi_1|3 - pi_1|5: estimate = -0.1740 (-0.5443 to 0.1962)
#>   pi_1|3 - pi_1|6: estimate = -0.2121 (-0.6281 to 0.2038)
#>   pi_1|4 - pi_1|5: estimate = 0.1822 (-0.0590 to 0.4235)
#>   pi_1|4 - pi_1|6: estimate = 0.1441 (-0.1627 to 0.4510)
#>   pi_1|5 - pi_1|6: estimate = -0.0381 (-0.2842 to 0.2080)
#> 
#> The Bonferroni-type simultaneous intervals
#>   pi_1|1 - pi_1|2: estimate = 0.0780 (-0.1030 to 0.2591)
#>   pi_1|1 - pi_1|3: estimate = 0.2924 (-0.0492 to 0.6341)
#>   pi_1|1 - pi_1|4: estimate = -0.0638 (-0.2991 to 0.1714)
#>   pi_1|1 - pi_1|5: estimate = 0.1184 (-0.0525 to 0.2893)
#>   pi_1|1 - pi_1|6: estimate = 0.0803 (-0.1588 to 0.3194)
#>   pi_1|2 - pi_1|3: estimate = 0.2144 (-0.1176 to 0.5465)
#>   pi_1|2 - pi_1|4: estimate = -0.1418 (-0.3629 to 0.0792)
#>   pi_1|2 - pi_1|5: estimate = 0.0404 (-0.1104 to 0.1912)
#>   pi_1|2 - pi_1|6: estimate = 0.0023 (-0.2229 to 0.2275)
#>   pi_1|3 - pi_1|4: estimate = -0.3563 (-0.7207 to 0.0082)
#>   pi_1|3 - pi_1|5: estimate = -0.1740 (-0.5006 to 0.1526)
#>   pi_1|3 - pi_1|6: estimate = -0.2121 (-0.5790 to 0.1548)
#>   pi_1|4 - pi_1|5: estimate = 0.1822 (-0.0306 to 0.3951)
#>   pi_1|4 - pi_1|6: estimate = 0.1441 (-0.1265 to 0.4148)
#>   pi_1|5 - pi_1|6: estimate = -0.0381 (-0.2552 to 0.1790)
#>   pi_1|6 - pi_1|6: estimate = 0.0000 (-0.2740 to 0.2740)
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic               11.666 (df=5)   0.039668
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                          1.260     0.207815
#>   Jonckheere-Terpstra                       1.431     0.152534
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient            0.054 (95% CI -0.030 to  0.137)
#> 
#> Spearman correlation w / Fieller CI          0.061 (95% CI -0.028 to  0.149)
#> Spearman correlation w / Bonett-Wright CI    0.061 (95% CI -0.023 to  0.144)
#> 
#> The gamma coefficient                      0.097
#> 
#> Kendalls tau-b w / Fieller CI               0.056 (95% CI  0.000 to  0.111)
#> -----------------------------------------------------------------------------------------

# Singly ordered tables

## Psychiatric diag. vs BMI (Mangerud et al., 2004)
the_rxc_table(table_7.5, nboot = 0)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      25.092 (df=10)   0.005174
#>   Likelihood ratio                        24.272 (df=10)   0.006910
#>   Fisher-Freeman-Halton asymptotic        23.770 (df=10)   0.008234
#> -------------------------------------------------------------------
#> Pearson residuals:
#>             [,1]       [,2]        [,3]
#> [1,] -1.53043754  0.5236911  0.06719368
#> [2,] -1.32840101  1.0010884 -0.76324572
#> [3,]  3.07824372  0.1955264 -2.01247808
#> [4,]  0.92452195 -0.6207156  0.41693475
#> [5,]  0.09530522 -0.4109633  0.56456984
#> [6,]  1.20826157 -1.1035988  0.98441639
#> 
#> Standardized Pearson residuals:
#>           [,1]       [,2]        [,3]
#> [1,] -1.734762  0.9357843  0.08575454
#> [2,] -1.622368  1.9273863 -1.04951534
#> [3,]  3.285383  0.3289763 -2.41834590
#> [4,]  1.002982 -1.0615604  0.50927014
#> [5,]  0.127442 -0.8663136  0.84999783
#> [6,]  1.327766 -1.9118241  1.21798982
#> 
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic               11.965 (df=5)   0.035265
#> 
#> 
#> Testing the fit of a proportional odds model
#>   Pearson goodness of fit:                11.505 (df=5)   0.042234
#>   Likelihodd ratio (deviance):            11.289 (df=5)   0.045939
#> 
#> 
#> Testing the effect in a proportional odds model
#>   Likelihood ratio                        12.983 (df=5)   0.023540
#> ------------------------------------------------------------------
#> 
#> 
#> Comparing the rows                  Statistic   P-value
#> --------------------------------------------------------
#> Wald (Z-statistic) row 2 vs row 1    -0.682     0.495121
#> Wald (Z-statistic) row 3 vs row 1    -3.482     0.000499
#> Wald (Z-statistic) row 4 vs row 1    -0.385     0.700454
#> Wald (Z-statistic) row 5 vs row 1    -0.330     0.741356
#> Wald (Z-statistic) row 6 vs row 1    -0.062     0.950912
#> --------------------------------------------------------
#> 
#> 
#> Comparing the rows     Estimate (95% Wald CI)     Odds ratio (95% Wald CI)
#> --------------------------------------------------------------------------
#> row 2 vs row 1:      -0.189 (-0.732 to  0.354)     0.828 (0.481 to 1.425)
#> row 3 vs row 1:      -1.742 (-2.722 to -0.761)     0.175 (0.066 to 0.467)
#> row 4 vs row 1:      -0.156 (-0.954 to  0.641)     0.855 (0.385 to 1.898)
#> row 5 vs row 1:      -0.086 (-0.599 to  0.427)     0.917 (0.549 to 1.532)
#> row 6 vs row 1:      -0.023 (-0.744 to  0.698)     0.978 (0.475 to 2.011)
#> --------------------------------------------------------------------------
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                          0.105     0.916449
#>   Jonckheere-Terpstra                       0.245     0.806459
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient            0.004 (95% CI -0.079 to  0.088)
#> 
#> Spearman correlation w / Fieller CI          0.011 (95% CI -0.077 to  0.100)
#> Spearman correlation w / Bonett-Wright CI    0.011 (95% CI -0.072 to  0.095)
#> 
#> The gamma coefficient                      0.015
#> 
#> Kendalls tau-b w / Fieller CI               0.009 (95% CI -0.046 to  0.065)
#> -----------------------------------------------------------------------------------------

## Low birth weight vs psychiatric morbitidy (Lund et al., 2012)
the_rxc_table(table_7.6, nboot = 150)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      11.656 (df=4)   0.020105
#>   Likelihood ratio                        11.742 (df=4)   0.019379
#>   Fisher-Freeman-Halton asymptotic        11.595 (df=4)   0.020629
#> -------------------------------------------------------------------
#> Pearson residuals:
#>            [,1]       [,2]       [,3]
#> [1,] -0.6784534 -0.5422277  1.7210436
#> [2,] -0.8885338  1.2601632  0.5887594
#> [3,]  1.2510967 -0.6151158 -1.8087474
#> 
#> Standardized Pearson residuals:
#>           [,1]       [,2]      [,3]
#> [1,] -1.372700 -0.6798339  2.230360
#> [2,] -1.841286  1.6182279  0.781471
#> [3,]  2.909348 -0.8863952 -2.694080
#> 
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic                9.162 (df=2)   0.010242
#> 
#> 
#> Testing the fit of a proportional odds model
#>   Pearson goodness of fit:                 2.031 (df=2)   0.362245
#>   Likelihodd ratio (deviance):             2.163 (df=2)   0.339122
#> 
#> 
#> Testing the effect in a proportional odds model
#>   Likelihood ratio                         9.579 (df=2)   0.008317
#> ------------------------------------------------------------------
#> 
#> 
#> Comparing the rows                  Statistic   P-value
#> --------------------------------------------------------
#> Wald (Z-statistic) row 2 vs row 1    -0.185     0.853517
#> Wald (Z-statistic) row 3 vs row 1    -2.614     0.008960
#> --------------------------------------------------------
#> 
#> 
#> Comparing the rows     Estimate (95% Wald CI)     Odds ratio (95% Wald CI)
#> --------------------------------------------------------------------------
#> row 2 vs row 1:      -0.080 (-0.934 to  0.773)     0.923 (0.393 to 2.166)
#> row 3 vs row 1:      -1.170 (-2.047 to -0.293)     0.310 (0.129 to 0.746)
#> --------------------------------------------------------------------------
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                         -2.867     0.004147
#>   Jonckheere-Terpstra                      -2.865     0.004176
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient           -0.239 (95% CI -0.387 to -0.079)
#> Pearson correlation w / BCa bootstrap CI    -0.239 (95% CI -0.446 to -0.100), nboot = 150
#> 
#> Spearman correlation w / Fieller CI         -0.236 (95% CI -0.392 to -0.066)
#> Spearman correlation w / Bonett-Wright CI   -0.236 (95% CI -0.386 to -0.073)
#> Spearman correlation w / BCa bootstrap CI   -0.236 (95% CI -0.417 to -0.085), nboot = 150
#> 
#> The gamma coefficient                     -0.364
#> The gamma coefficient w / BCa bootstrap CI  -0.364 (95% CI -0.556 to -0.106), nboot = 150
#> 
#> Kendalls tau-b w / Fieller CI              -0.217 (95% CI -0.319 to -0.111)
#> Kendalls tau-b w / BCa bootstrap CI        -0.217 (95% CI -0.397 to -0.086), nboot = 150
#> -----------------------------------------------------------------------------------------

# Doubly ordered tables

## Colorectal cancer (Jullumstroe et al., 2009)
the_rxc_table(table_7.7, nboot = 0)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      13.614 (df=9)   0.136734
#>   Likelihood ratio                        14.471 (df=9)   0.106516
#>   Fisher-Freeman-Halton asymptotic        13.830 (df=9)   0.128509
#> -------------------------------------------------------------------
#> Pearson residuals:
#>             [,1]        [,2]       [,3]       [,4]
#> [1,] -0.65638953 -0.03163655 -0.6950590  1.4076349
#> [2,] -1.09582755 -2.05025498  0.5745765  0.7499116
#> [3,]  0.01113385  0.54613868  0.2603159 -0.7048281
#> [4,]  1.28267370  1.18967248 -0.4831628 -0.5135737
#> 
#> Standardized Pearson residuals:
#>             [,1]        [,2]       [,3]       [,4]
#> [1,] -0.70111313 -0.03409375 -1.1548521  1.6902006
#> [2,] -1.28680170 -2.42905006  1.0495316  0.9899226
#> [3,]  0.01496521  0.74062699  0.5442724 -1.0649824
#> [4,]  1.56847093  1.46773239 -0.9190350 -0.7059677
#> 
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic                8.334 (df=3)   0.039582
#> 
#> 
#> Testing the fit of a proportional odds model
#>   Pearson goodness of fit:                 5.820 (df=6)   0.443643
#>   Likelihodd ratio (deviance):             6.132 (df=6)   0.408616
#> 
#> 
#> Testing the effect in a proportional odds model
#>   Likelihood ratio                         8.340 (df=3)   0.039486
#> ------------------------------------------------------------------
#> 
#> 
#> Comparing the rows                  Statistic   P-value
#> --------------------------------------------------------
#> Wald (Z-statistic) row 2 vs row 1    -0.470     0.638406
#> Wald (Z-statistic) row 3 vs row 1    -1.721     0.085308
#> Wald (Z-statistic) row 4 vs row 1    -1.996     0.045950
#> --------------------------------------------------------
#> 
#> 
#> Comparing the rows     Estimate (95% Wald CI)     Odds ratio (95% Wald CI)
#> --------------------------------------------------------------------------
#> row 2 vs row 1:      -0.144 (-0.745 to  0.457)     0.866 (0.475 to 1.579)
#> row 3 vs row 1:      -0.504 (-1.077 to  0.070)     0.604 (0.341 to 1.073)
#> row 4 vs row 1:      -0.604 (-1.198 to -0.011)     0.546 (0.302 to 0.989)
#> --------------------------------------------------------------------------
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                         -2.854     0.004321
#>   Jonckheere-Terpstra                      -2.710     0.006720
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient           -0.102 (95% CI -0.171 to -0.032)
#> 
#> Spearman correlation w / Fieller CI         -0.096 (95% CI -0.169 to -0.022)
#> Spearman correlation w / Bonett-Wright CI   -0.096 (95% CI -0.165 to -0.026)
#> 
#> The gamma coefficient                     -0.139
#> 
#> Kendalls tau-b w / Fieller CI              -0.086 (95% CI -0.132 to -0.040)
#> -----------------------------------------------------------------------------------------

## Breast Tumor (Bofin et al., 2004)
the_rxc_table(table_7.8, nboot = 200)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      64.338 (df=8)   0.000000
#>   Likelihood ratio                        76.221 (df=8)   0.000000
#>   Fisher-Freeman-Halton asymptotic        68.473 (df=8)   0.000000
#> -------------------------------------------------------------------
#> Pearson residuals:
#>            [,1]      [,2]        [,3]      [,4]       [,5]
#> [1,]  1.9667391  3.107810  0.54540721 -1.752936 -3.1718074
#> [2,] -0.9368691 -1.617342 -0.02110825  1.627276  0.8295151
#> [3,] -2.0224306 -3.063243 -0.79197165  1.035477  3.9213814
#> 
#> Standardized Pearson residuals:
#>           [,1]      [,2]        [,3]      [,4]      [,5]
#> [1,]  3.084420  5.414349  0.82730534 -2.917449 -5.496684
#> [2,] -1.139943 -2.186105 -0.02484131  2.101240  1.115310
#> [3,] -2.485053 -4.181273 -0.94121696  1.350245  5.324370
#> 
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic               57.044 (df=2)   0.000000
#> 
#> 
#> Testing the fit of a proportional odds model
#>   Pearson goodness of fit:                 6.187 (df=6)   0.402576
#>   Likelihodd ratio (deviance):             7.610 (df=6)   0.268096
#> 
#> 
#> Testing the effect in a proportional odds model
#>   Likelihood ratio                        68.611 (df=2)   0.000000
#> ------------------------------------------------------------------
#> 
#> 
#> Comparing the rows                  Statistic   P-value
#> --------------------------------------------------------
#> Wald (Z-statistic) row 2 vs row 1     4.921     0.000001
#> Wald (Z-statistic) row 3 vs row 1     7.082     0.000000
#> --------------------------------------------------------
#> 
#> 
#> Comparing the rows     Estimate (95% Wald CI)     Odds ratio (95% Wald CI)
#> --------------------------------------------------------------------------
#> row 2 vs row 1:       2.215 ( 1.333 to  3.098)     9.165 (3.793 to 22.148)
#> row 3 vs row 1:       3.543 ( 2.562 to  4.523)     34.563 (12.966 to 92.137)
#> --------------------------------------------------------------------------
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                          6.560     0.000000
#>   Jonckheere-Terpstra                       7.658     0.000000
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient            0.571 (95% CI  0.444 to  0.676)
#> Pearson correlation w / BCa bootstrap CI     0.571 (95% CI  0.471 to  0.680), nboot = 200
#> 
#> Spearman correlation w / Fieller CI          0.657 (95% CI  0.541 to  0.749)
#> Spearman correlation w / Bonett-Wright CI    0.657 (95% CI  0.536 to  0.752)
#> Spearman correlation w / BCa bootstrap CI    0.657 (95% CI  0.550 to  0.738), nboot = 200
#> 
#> The gamma coefficient                      0.776
#> The gamma coefficient w / BCa bootstrap CI   0.776 (95% CI  0.658 to  0.876), nboot = 200
#> 
#> Kendalls tau-b w / Fieller CI               0.575 (95% CI  0.493 to  0.646)
#> Kendalls tau-b w / BCa bootstrap CI         0.575 (95% CI  0.397 to  0.623), nboot = 200
#> -----------------------------------------------------------------------------------------

## Self-rated health (Breidablik et al., 2008)
the_rxc_table(table_7.9, nboot = 0)
#> 
#> Method                                     Statistic      P-value
#> -------------------------------------------------------------------
#> Unordered rxc tables
#>   Pearson chi-square                      361.420 (df=9)   0.000000
#>   Likelihood ratio                        296.140 (df=9)   0.000000
#>   Fisher-Freeman-Halton asymptotic        299.161 (df=9)   0.000000
#> -------------------------------------------------------------------
#> Pearson residuals:
#>            [,1]      [,2]      [,3]         [,4]
#> [1,]  7.0312583  1.535737 -1.420054  0.006404978
#> [2,]  0.7647562  8.561983 -0.611197 -4.788498683
#> [3,] -0.4391961  0.299126  4.097410 -6.244697301
#> [4,] -0.6064165 -4.558824 -4.932546 10.433734978
#> 
#> Standardized Pearson residuals:
#>            [,1]       [,2]      [,3]          [,4]
#> [1,]  7.0719229  1.6366932 -2.267789   0.007522952
#> [2,]  0.7971267  9.4563765 -1.011530  -5.828676663
#> [3,] -0.6831955  0.4930452 10.120206 -11.343945914
#> [4,] -0.7479617 -5.9580910 -9.659905  15.028454866
#> 
#> 
#> Method                                     Statistic      P-value
#> ------------------------------------------------------------------
#> Singly ordered rxc tables
#>   Kruskal-Wallis asymptotic               250.843 (df=3)   0.000000
#> 
#> 
#> Testing the fit of a proportional odds model
#>   Pearson goodness of fit:                36.508 (df=6)   0.000002
#>   Likelihodd ratio (deviance):            26.422 (df=6)   0.000186
#> 
#> 
#> Testing the effect in a proportional odds model
#>   Likelihood ratio                        269.718 (df=3)   0.000000
#> ------------------------------------------------------------------
#> 
#> 
#> Comparing the rows                  Statistic   P-value
#> --------------------------------------------------------
#> Wald (Z-statistic) row 2 vs row 1     0.209     0.834621
#> Wald (Z-statistic) row 3 vs row 1     1.797     0.072354
#> Wald (Z-statistic) row 4 vs row 1     3.449     0.000563
#> --------------------------------------------------------
#> 
#> 
#> Comparing the rows     Estimate (95% Wald CI)     Odds ratio (95% Wald CI)
#> --------------------------------------------------------------------------
#> row 2 vs row 1:       0.156 (-1.305 to  1.616)     1.168 (0.271 to 5.032)
#> row 3 vs row 1:       1.316 (-0.119 to  2.752)     3.729 (0.887 to 15.668)
#> row 4 vs row 1:       2.536 ( 1.095 to  3.977)     12.625 (2.988 to 53.339)
#> --------------------------------------------------------------------------
#> 
#> 
#> Method                                    Statistic    P-value
#> ---------------------------------------------------------------
#> Doubly ordered rxc tables
#>   Linear-by-linear                         15.421     0.000000
#>   Jonckheere-Terpstra                      15.985     0.000000
#> ---------------------------------------------------------------
#> 
#> 
#> Correlation measures
#> -----------------------------------------------------------------------------------------
#> Pearson correlation coefficient            0.318 (95% CI  0.281 to  0.354)
#> 
#> Spearman correlation w / Fieller CI          0.326 (95% CI  0.287 to  0.364)
#> Spearman correlation w / Bonett-Wright CI    0.326 (95% CI  0.289 to  0.363)
#> 
#> The gamma coefficient                      0.526
#> 
#> Kendalls tau-b w / Fieller CI               0.308 (95% CI  0.283 to  0.332)
#> -----------------------------------------------------------------------------------------