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ABSTRACT

Aberrant DNA methylation is an early event in
breast carcinogenesis and plays a critical role
in regulating gene expression. Here, we perform
genome-wide expression-methylation Quantitative
Trait Loci (emQTL) analysis through the integration
of DNA methylation and gene expression to iden-
tify disease-driving pathways under epigenetic con-
trol. By grouping the emQTLs using biclustering
we identify associations representing important bi-
ological processes associated with breast cancer
pathogenesis including regulation of proliferation
and tumor-infiltrating fibroblasts. We report genome-
wide loss of enhancer methylation at binding sites
of proliferation-driving transcription factors includ-
ing CEBP-�, FOSL1, and FOSL2 with concomitant
high expression of proliferation-related genes in ag-
gressive breast tumors as we confirm with scRNA-
seq. The identified emQTL-CpGs and genes were
found connected through chromatin loops, indicat-
ing that proliferation in breast tumors is under epi-
genetic regulation by DNA methylation. Interestingly,
the associations between enhancer methylation and
proliferation-related gene expression were also ob-
served within known subtypes of breast cancer, sug-
gesting a common role of epigenetic regulation of
proliferation. Taken together, we show that prolifer-
ation in breast cancer is linked to loss of methy-
lation at specific enhancers and transcription fac-
tor binding and gene activation through chromatin
looping.

INTRODUCTION

Epigenetic alterations, such as DNA methylation, have re-
cently emerged as a hallmark of many cancer types includ-
ing breast cancer. Previous studies have shown that changes
in DNA methylation patterns are present already in pre-
invasive lesions, thereby suggesting that such alterations oc-
cur early during breast cancer carcinogenesis (1–3). DNA
methylation has been predominantly reported to be impli-
cated in gene repression through promoter methylation (4),
however, we have shown that DNA methylation at CpGs
up to 100 kb away from a gene transcription start site could
be associated with its expression (3). Furthermore, a ma-
jor portion of the aberrantly methylated DNA observed in
breast cancers occurs in intergenic regions. Altogether, this
suggests that DNA methylation at distal cis-regulatory re-
gions such as enhancers may be an important contributor
to breast cancer development and progression (3,5).

Enhancers are cis-acting DNA sequences involved in
transcriptional regulation. This process is mediated by cell-
type-specific transcription factor (TF) binding and the for-
mation of physical interactions between enhancers and pro-
moters of their associated genes (6,7). TFs are key proteins
involved in the regulation of gene expression and are linked
to different functions depending on where they bind in the
genome. While some TFs activate gene transcription by di-
rectly interacting with the transcriptional machinery, some
TFs known as pioneer factors may regulate gene expres-
sion by remodeling the chromatin landscape to control tran-
scriptional activity (8). TF accessibility to DNA is strictly
controlled by the dynamic interplay between DNA methy-
lation and histone modifications in a cell-type specific man-
ner (9,10).

Several studies have reported DNA methylation at distal
enhancer regions to be implicated in gene regulation mainly
by interfering with TF binding to enhancer regions (11–13).
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Enhancer methylation is known to be dynamic and more
tissue-specific than promoter methylation, thereby suggest-
ing that enhancers may play an essential role in contributing
to cell phenotype (14–16). As for promoters, DNA methy-
lation at enhancers tends to be associated with transcrip-
tional inactivity, while enhancer hypomethylation is often
associated with TF binding followed by transcriptional ac-
tivation (7,17). However, the role of DNA methylation at
enhancer regions and TF binding sites is still not fully
understood.

We previously presented the genome-wide expression-
methylation Quantitative Trait Loci (emQTL) analysis and
showed that estrogen receptor (ER) positive breast tumors
display disease-specific hypomethylation of enhancers car-
rying binding sites of ER�, FOXA1 and GATA3, suggest-
ing an epigenetic regulation of estrogen signaling in breast
cancer (18). The two most apparent clusters were reported:
the described above estrogen cluster and a cluster related
to varying immune infiltration. Here, we use a new ap-
proach, expand our analysis to include more patient sam-
ples, and use a sophisticated biclustering method to charac-
terize novel biclusters of CpG-gene associations (Figure 1).
We discover a proliferation-related bicluster in breast can-
cer characterized by hypomethylation at enhancers carrying
transcription factor binding sites (TFBS) of proliferation-
driving TFs in ER-negative (ER–) tumors. The identified
CpGs and genes were found enriched in enhancer regions
and to be connected through chromatin loops, thereby indi-
cating that proliferation in breast cancer is under epigenetic
regulation.

MATERIALS AND METHODS

Patient material

The OSL2 breast cancer cohort (19,20) has collected ma-
terial from breast cancer patients with primary operable
disease (T1–T2) in several south-eastern Norwegian hos-
pitals. Patients were included between 2006 and 2019. The
study was approved by the Norwegian Regional Com-
mittee for Medical Research Ethics (approval number
1.2006.1607, amendment 1.2007.1125). All patients have
provided written consent for use of the material for research
purposes.

The Cancer Genome Atlas Program (TCGA) breast can-
cer cohort has previously been described (21). Level 3 ex-
pression and methylation data were downloaded from the
TCGA Data Portal (https://tcga-data.nci.nih.gov). CpGs
and genes with >50% missing values were excluded and the
remaining missing methylation values were imputed using
the pamr (R function pamr.knnimpute) with k = 10. Only
breast cancer tumor samples with matching expression and
methylation data were included for emQTL validation in
TCGA (n = 558).

The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) has previously been described
(22). METABRIC is a large gene expression cohort with
a long follow-up time widely used for the investigation
of breast cancer disease. Gene expression data is avail-
able from the European Genome Phenome Archive (DOI:
EGAS00000000083, n = 1980).

Statistical computation and bioinformatical analyses

All computational analyses were performed using the R
software v3.5.1 unless otherwise specified. The emQTL
analysis R code can be found at https://github.com/
JorgenAnkill/emQTL.

Results were considered statistically significant if the ad-
justed P-value was <0.05. Bar plots showing ChromHMM
and UniBind enrichment results were generated using the
R package ggplot2 (23). Kaplan–Meier estimators and log-
rank tests were performed using the survival R package
v3.2.3 (functions Surv and survfit). Survival plots were made
using the survminer R package (v0.4.8). The Upset plot was
generated using the UpSet R-package v1.4.0 (24).

Genome-wide correlation analysis

Pearson’s correlations between DNA methylation of CpGs
with an interquartile range of more than 0.1 (n = 182 620)
were tested against all genes (n = 18 586) for non-zero cor-
relations in the OSL2 breast cancer cohort resulting in more
than three billion tests. CpG-gene associations with a Bon-
ferroni corrected P-value<0.05 (nominal P-value<1.47e–
11) were considered significant. The significant CpG-gene
associations in OSL2 were subsequently validated in the
TCGA breast cancer cohort (n = 558). The significant as-
sociations were considered validated if the Bonferroni cor-
rected P-value was <0.05 (nominal P-value < 6.70e–11). Of
the 5 928 496 non-validated emQTL pairs, 28 523 associ-
ations could not be tested due to missing DNA methyla-
tion or expression data in TCGA. Only validated associa-
tions were included in the subsequent analyses. Probes and
genes with less than five associations were filtered out. The
remaining CpGs and genes with associations were kept in
the following analyses. Before the analysis, gene symbols for
expression data in the discovery and validation cohort were
harmonized using the R package HGNChelper v0.7.1 (func-
tion checkGeneSymbols).

Biclustering of the emQTL correlation coefficients

The inverse correlation coefficients (r* – 1) from the emQTL
analysis were biclustered using Python (v3.7.9) by apply-
ing the SpectralCoclustering algorithm contained within
the scikit-learn library (25). The biclustering algorithm
will identify biclusters in which the rows intersecting the
columns within a bicluster will have a higher average value
than the intersecting columns outside a bicluster. For the
initial spectral co-clustering analysis, the random state pa-
rameter was set to 0. Spectral co-clustering was performed
using the inverse correlation coefficients (correlation coef-
ficient* – 1) values obtained from the OSL2 discovery co-
hort. Biclustering of the absolute correlation coefficient val-
ues was also performed for comparison to using the in-
verse correlation coefficients (see Supplementary Text, Sup-
plementary Table S2A, Supplementary Figures S9–S11).
Python code used for the biclustering is available from https:
//github.com/JorgenAnkill/emQTL.

Determination of the number of biclusters for the bi-
clustering algorithm was performed by calculating a mean
square residue (MSR) score (26) when the number of biclus-
ters was set to be a number between 2 and 20. A lower MSR
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Figure 1. Study overview. Flowchart showing the pipeline used for identification of CpG-gene associations (emQTLs) and methods used for emQTL
grouping and characterization.

score is associated with a stronger coherence exhibited by
the biclusters and thereby indicates better biclustering. The
elbow of the plot was defined to be the number of biclus-
ters, which was therefore set to be 5. Biclustering by setting
the number of biclusters to be 8 or 12 was also performed
as a comparison (see Supplementary Text, Supplementary
Table S2B, C).

Assessment of bicluster stability was performed using a
permutation test (100 permutations) using random seeds
and comparing the biclusters obtained with the biclusters
from the initial biclustering when the random state param-
eter was set to 0. For each run, GSEA was performed on
the gene list from each bicluster identified to define their bi-
ological functions. The number of times a CpG or gene for
each bicluster from the initial biclustering was found within
a bicluster of similar biological functions for each permuta-
tion was then calculated (Supplementary Figure S2A, B).
The estrogen biclusters (Biclusters 2 and 4) were considered
as one bicluster in this analysis.

Gene set enrichment analysis

Gene sets used for GSEA analysis were downloaded from
the Molecular Signatures Database v7.1 (27). Enrichment

was determined by hypergeometric testing (R function phy-
per) using the Hallmark (H) and gene ontology (GO; C5)
gene set collections. P-values were corrected for multiple
testing using the Benjamini–Hochberg (BH) procedure (R
function p.adjust).

Hierarchical clustering of DNA methylation and gene expres-
sion levels

Hierarchical clustering of the DNA methylation- and gene
expression levels was performed using the R package
pheatmap using Euclidean distance and the ward.D2 cluster
agglomeration methods. For visualization purposes, gene
expression values were centered and scaled by rows by di-
viding the centered rows by their standard deviations (R
function scale).

Genomic segmentation and annotation

ChromHMM is a software for learning and characteriz-
ing chromatin states by using multivariate Hidden Markov
Model for identifying combinatorial patterns of histone
marks obtained from ChIP-seq data to functionally an-
notate the genome (28). ChromHMM segmentation data
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from cell lines representing different breast cancer subtypes
were obtained from Xi et al. (28), which included MCF7
and ZR751 (Luminal A), UACC812, and MB361 (Luminal
B), HCC1954 and AU565 (Her2+), HCC1937 and MB469
(Basal-like). ChIP-seq peaks for key histone modifications
including H3K4me3, H3K4me1, H3K27me3, H3K9me3,
and H3K36me3 (GSE85158) were used to predict chro-
matin states across the genome of the cell lines. The genomes
were annotated into thirteen distinct chromatin states in-
cluding active promoter (PrAct), active promoter flanking
(PrFlk), active transcription (TxAct), active transcription
flanking (TxFlk), active intergenic enhancer (EhAct), ac-
tive genic enhancer (EhGen), bivalent promoter (PrBiv),
bivalent enhancer (EhBiv), repressive polycomb domain
(RepPC), weak repressive domain (WkRep), repeat/ZNF
genes (RpZNF), heterochromatin (Htchr) and quiescent
state/low signals (QsLow). Subtype-specific ChromHMM
annotations were made by collapsing the ChromHMM an-
notations from cell lines of similar subtypes and keeping the
common ones.

Enrichment of CpGs in a ChromHMM defined func-
tional region was measured as the ratio between the fre-
quency of cell cycle bicluster-CpGs found in a specific seg-
ment type over the frequency of CpGs from the Illumina
HumanMethylation450 array found within the same seg-
ment type. P-values were obtained by hypergeometric test-
ing with the Illumina 450k array probes as background (n =
485 512). P-values were corrected for multiple testing using
the BH procedure.

TF enrichment analysis in UniBind-defined TF binding re-
gions

Enrichment of CpGs in TF binding regions was assessed
using data obtained from the UniBind 2018 (29) database.
UniBind is a database storing direct TF-DNA interactions
for 231 unique human TFs obtained from 1983 ChIP-seq
datasets performed on 315 different cell lines and tissues.
Maps of direct TF–DNA interactions were downloaded
from the UniBind website (https://unibind2018.uio.no) for
the prediction model PWM. The genomic positions of all
CpGs from the Illumina 450k array were lifted over from
hg19 to hg38 using the LiftOver web tool from the UCSC
genome browser (https://genome.ucsc.edu) and were ex-
tended with 150 bp upstream and downstream. Since each
TF can have binding regions derived from multiple ChIP-
seq experiments, we merged the TF binding regions for all
ChIP-seq experiments for each TF. Enrichment of CpGs in
proximity to TF binding regions was computed using hyper-
geometric testing (R function phyper) with IlluminaMethy-
lation450 Bead Chip CpGs as background. False discovery
rate was estimated by BH correction using the R function
p.adjust.

scRNA-seq data

Count matrix from single-cell RNA-seq obtained from
Qian et al. (30) was analyzed using the Seurat R package
v3.2.1 (31) to obtain UMAP. In brief, the count matrix was
already filtered for dying cells by the authors. It was further

normalized and scaled regressing out potential confound-
ing factors (number of UMIs, number of genes detected
in cell, percentage of mitochondrial RNA). After scaling,
variably expressed genes were used to construct principal
components (PCs). PCs covering the highest variance in the
dataset were selected based on elbow and Jackstraw plots to
build the UMAP. Clusters were calculated by the FindClus-
ters function with a resolution between 0.8 and 1.8 and vi-
sualized using the UMAP dimensional reduction method.
Four main cell types were identified on these UMAP, com-
bining both the information obtained from the UMAP clus-
tering and cell-type annotation from the authors. The main
cell types were immune-, cancer-, endothelial cells and fi-
broblasts.

xCell analysis

The xCell (32) algorithm was used to deconvolute the cel-
lular composition of the tumor samples. xCell is a pow-
erful machine learning framework trained on 64 immune
and stromal cell datasets used to generate cell-type spe-
cific enrichment scores and adjust them to cell-type pro-
portions. The algorithm uses 10 808 genes as signatures
to identify specific cell types from bulk tissue. The cell
type enrichment scores were calculated for the OSL2 co-
hort (n = 272) using the xCell (32) web tool (http://xcell.
ucsf.edu/). Gene names from the expression data of the
OSL2 cohort were harmonized with the gene list provided
by the xCell tool before the analysis using the HGNChelper
v0.7.1 R package. Pre-calculated xCell scores for TCGA tu-
mor samples were downloaded from http://xcell.ucsf.edu/
xCell TCGA RSEM.txt.

Chromatin interaction mapping

Chromatin Interaction Analysis by Paired-End Tag se-
quencing (ChIA-PET) and Integrated Methods for Pre-
dicting Enhancer Targets (IM-PET) are methods used to
identify such interactions on a genome-wide scale (33,34).
ChIA-PET data defining long-range chromatin interactions
in the ER+ MCF7 breast cancer cell line was obtained from
ENCODE (Accession number ENCR000CAA; (33)). Only
cis loops were included in the analysis. An emQTL was con-
sidered to be in a ChIA-PET Pol2 loop if the CpG and tran-
scription start site of its associated gene were found within
the genomic intervals of two opposite feet of the same
loop. Computational chromatin interactions predicted by
the IM-PET algorithm for the ER- HCC1954 breast can-
cer cell line was retrieved from the 4Dgenome data portal
(35). BEDTools v2.27.1 (36) was used to intersect the CpG
and gene positions with the genomic intervals defining the
feet of the chromatin loops for the ChIA-PET and IM-PET
data. Chromatin interaction plots were made using the Gviz
v1.32.0 (37) and GenomicRanges v1.40.0 (38) R packages.
Genome interaction tracks were made using the R package
GenomicInteractions v1.22.0 (39).

Enrichment of in cis (i.e. on the same chromosome)
emQTLs in ChIA-PET and IM-PET loops was determined
by hypergeometric tests (R function phyper) using all possi-
ble in cis CpG-gene pairs as background.
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Identification of proliferation-promoting emQTLs

A supervised approach was used to identify proliferation-
promoting emQTLs by using the characteristics of the cell
cycle bicluster in the candidate search; (i) the CpG-gene
pair must be on opposite sides of chromatin loops defined
by ChIA-PET (33) and/or IM-PET (34) loops and (ii) be
located in enhancers according to ChromHMM segmen-
tation (28) of either subtype. (iii) The CpG must be in
the binding region of the top enriched TFs as defined by
UniBind (29) and (iv) the gene must be a part of a curated
gene set associated with proliferation. There must also be
a significant correlation between DNA methylation at the
candidate CpG and the candidate gene.

RESULTS

Expanded expression-methylation Quantitative Trait Loci
(emQTL) analysis

Genome-wide in cis and in trans correlations between the
gene expression and DNA methylation at CpGs was per-
formed in the OSL2 breast cancer cohort (n = 277, Sup-
plementary Figure S1). We identified 16 193 303 significant
CpG-gene associations (Bonferroni corrected P-values <
0.05) of which 10 264 807 (63.4%) were validated in the in-
dependent The Cancer Genome Atlas (TCGA) breast can-
cer cohort (BRCA, n = 558). Among these associations, 613
600 were cis-emQTLs and they were significantly more en-
riched than trans-emQTLs (9 324 057 associations, P-value
< 2.2e–16, fold enrichment = 1.19). The validated associa-
tions involved the expression level of 6803 genes and methy-
lation level of 64 439 CpGs. To focus on hub associations,
emQTL-CpGs and emQTL-genes with less than five associ-
ations were filtered out. The remaining CpGs (n = 44 263)
and genes (n = 4904) with associations after filtering were
included in downstream analyses. To identify emQTLs with
similar biological features, we grouped the emQTLs using
Spectral co-clustering (40) of the inverse correlation coef-
ficients values (correlation coefficient* – 1; see Supplemen-
tary Text) obtained from the genome-wide emQTL analysis.

The number of biclusters was set to five based on a mean
square residue score (MSR, Figure 2A: see also Materials
and Methods). The five biclusters were (Figure 2B, Supple-
mentary Table S1A, B): Bicluster 1 (8641 CpGs and 1085
genes), Bicluster 2 (9398 CpGs and 870 genes), Bicluster 3
(6910 CpGs and 936 genes), Bicluster 4 (10 564 CpGs and
1087 genes) and Bicluster 5 (8750 CpGs and 926 genes). To
confirm that the identified biclusters were not artifacts of
the selected seed parameter used by the biclustering algo-
rithm, we assessed bicluster stability by using a permutation
test (see Materials and Methods). The biclusters were found
to be very stable as only 15 genes and 113 CpGs were found
<70% of the time within a bicluster of similar biological
characteristic (Supplementary Figure S2A, B).

To elucidate the biological role of the biclusters, gene set
enrichment analysis (GSEA) was performed based on the
genes of each bicluster (Figure 2C and Supplementary Ta-
ble S1C). As expected, we rediscovered the estrogen- (Bi-
clusters 2 and 4) and immune cluster (Bicluster 5) first de-
scribed by Fleischer, Tekpli et al. (18). The majority of the
previous paper immune cluster genes (94.5%) and CpGs

(53.5%) were found in the newly discovered immune biclus-
ter and the same was true for the estrogen cluster genes
(53.9%) and CpGs (56.7%). Moreover, the median correla-
tion coefficients from OSL2 between emQTL-CpGs in Bi-
cluster 2 and expression of the emQTL genes in Bicluster 4
were negative (Supplementary Figure S3), thereby suggest-
ing that DNA methylation at the CpGs show similar trends
in both DNA methylation and expression in both biclus-
ters. This suggests that these two biclusters, separated by
the biclustering algorithm recapitulate the same biological
pathway. In addition to rediscovering the immune- and es-
trogen clusters, we now identify two novel biclusters with
distinct biological functions: cell cycle regulation (Biclus-
ter 1) and epithelial-mesenchymal transition (EMT), extra-
cellular matrix (ECM), and cell locomotion (Bicluster 3) as
shown in Figure 2C.

Enhancer methylation, TF binding and a proliferative pheno-
type of human breast tumors

To understand the functional link between DNA methyla-
tion at CpG sites and expression of genes in the cell cycle bi-
cluster (Bicluster 1), we first aimed to characterize the func-
tional genomic location of the CpGs using ChromHMM
segmentation (see Material and methods) including breast
cancer cell lines representing different breast cancer sub-
types (28). CpGs in the cell cycle bicluster were significantly
enriched (P-value = 1.08e–77) in active intergenic enhancer
regions of breast tumors across all subtypes (Figure 3A,
Supplementary Table S1D). Moreover, we found that 46%
of the CpGs overlapped with at least one active intergenic
enhancer region of another subtype (Figure 3B).

Having found the cell cycle bicluster-CpGs to be enriched
in intergenic enhancer regions, we next sought to identify
transcription factor binding regions (TFBR) overlapping
the cell cycle bicluster-CpGs using direct TF-DNA inter-
action data obtained from UniBind (29). The genomic re-
gions of the cell cycle bicluster-CpGs were found enriched
in the binding region of TFs previously described to regu-
late proliferation in breast cancers including CEBP-� (41)
and several of the FOS family of proteins including FOS
(42), FOSL1 (43,44), and FOSL2 (45) (Figure 3C, Supple-
mentary Table S1E).

Using unsupervised hierarchical clustering, we further
investigated the level of DNA methylation of cell cycle
bicluster-CpGs in regard to histopathological features in-
cluding ER status and PAM50 subtype. DNA methylation
level of the cell cycle bicluster CpGs (n = 8641) was clearly
associated with the breast cancer subtypes (Chi-squared
test P-value = 0.0005 (three patient subclusters), Figure
3D), and the CpGs in this bicluster showed lower methy-
lation levels in the Basal-like, Her2-enriched, and Normal-
like tumors in both the OSL2 (Figure 3E) and TCGA (Fig-
ure 3F) breast cancer cohorts. Moreover, DNA methylation
at the cell cycle bicluster-CpGs in TF binding regions of
the top six most enriched TFs was lower in Basal-like and
Her2-enriched breast tumors (Supplementary Figure S4A-
F). Altogether, these results show that CpGs in the cell cy-
cle bicluster are enriched for enhancer regions overlapping
TFBR of TFs associated with proliferation such as CEBP-
�, FOSL1, and FOSL2. Moreover, their TFBR were found
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Figure 2. Identification and characterization of the emQTL biclusters. (A) Line chart showing the average MSR score for the biclusters obtained by
biclustering of the inverse correlation coefficients obtained from the emQTL analysis in OSL2 when the number of biclusters k were set to be a number
between 2 and 20. (B) Heatmap showing the inverse correlation coefficients of the emQTL-CpGs (n = 44 263) and emQTL-genes (n = 4904) from OSL2
after biclustering. Rows represent CpGs and columns represent genes. Each of the five biclusters is annotated. Blue points indicate negative correlations
between the variables while red points represent positive correlations. White points indicate little or no correlation. (C) GSEA of the genes in Bicluster
1 (n = 1085), Bicluster 2 (n = 870), Bicluster 3 (n = 936), Bicluster 4 (n = 1087) and Bicluster 5 (n = 926) using gene sets obtained from the MSigDB.
The length of the bars represents the log-transformed Benjamini-Hochberg (BH) corrected P-values obtained by hypergeometric distribution. Red bars
indicate Hallmark gene sets while GO biological process, GO molecular function, and GO cellular compartment GO gene sub-collections are colored in
orange, green and blue, respectively. Overlap between the gene list of the bicluster and each MSigDB gene set is annotated within each bar.

to be less methylated in Basal-like and Her2-enriched com-
pared to Luminal A and B tumors.

One of the most known markers of cell proliferation is
the MKI67 gene which is a non-histone nuclear protein ex-
pressed during the active phase of the cell cycle (46). We
found a significant negative correlation between average
methylation of the cell cycle bicluster CpGs and expression
of MKI67 both in OSL2 and TCGA within the ER- tu-
mors (P-value = 0.012 and 0.0005) and for all breast tumors
(P-value = 1.79e–13 and 2.78e–13, Supplementary Figure
S5A, B). Interestingly, we also find MKI67 to reside within
the cell cycle bicluster (Supplementary Table S1B). These
observations support the link between DNA methylation at
the cell cycle bicluster-CpGs and proliferation.

To assess the link between DNA methylation and gene
expression in the cell cycle bicluster, we performed unsuper-
vised clustering using the expression of genes within the bi-
cluster and observed that expression was higher in the sub-

types known to have higher proliferation rates (Figure 4A).
Basal-like tumors showed the highest expression, followed
by Her2-enriched and Normal-like (Figure 4B). Luminal A
tumors showed the lowest expression of cell cycle bicluster
genes in OSL2 (Figure 4B) and TCGA (Figure 4C). A cor-
relation analysis between average methylation and average
expression of the CpGs and genes in the cell cycle bicluster
separately within ER+ and ER– tumors showed a signifi-
cant correlation (Figure 4D, E). Taken together, these re-
sults show a statistically significant association between en-
hancer methylation and expression of proliferation-related
genes, and that ER– breast tumors have low methylation
at enhancers potentially driving proliferation. The varying
degree of enhancer methylation may be related to the pro-
liferative potential in ER– tumors.

To investigate the functional relationship between DNA
methylation and gene expression in the cell cycle bicluster
we assessed the extent to which CpGs within this bicluster
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Figure 3. Functional characterization of the emQTL-CpGs in the cell cycle bicluster. (A) Bar plot the showing enrichment of the cell cycle bicluster-CpGs
in ChromHMM-defined genomic regions by subtype. The length of the bars represents the log-transformed BH corrected P-values. The color gradient of
the bars represents fold enrichment (FE) in which a red color indicates FE close to 3.5 while white bars are genomic regions by subtype with FE close to 0.
An enrichment was considered to be significant if the BH-corrected P-value was less than 0.05. (B) UpSet plot showing the overlap between CpGs in the
cell cycle bicluster found within ChromHMM-defined active intergenic enhancer regions by breast cancer subtype. (C) Bar plot representing enrichment
of the cell cycle bicluster-CpGs in the binding region of specific TFs according to UniBind. Bar length displays the log-transformed BH-corrected P-
value obtained by hypergeometric testing for each TF. Red color indicates FE close to 3.5 while a white color indicates FE close to 0. (D) Unsupervised
hierarchical clustering of DNA methylation levels of the 8641 cell cycle bicluster-CpGs for the tumor tissue from OSL2 with PAM50 status available (n =
272). Rows represent CpGs and columns represent histopathological features including PAM50 subtype and ER status of the tumor samples. Red points
indicate methylated CpGs while blue points represent unmethylated CpGs. Boxplots showing the average DNA methylation of the cell cycle bicluster-CpGs
in (E) OSL2 (n = 272) and (F) TCGA (n = 562) by PAM50 subtype. Kruskal-Wallis test P-values are denoted in the lower-left corner.
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Figure 4. Expression of genes in the cell cycle bicluster. (A) Unsupervised clustering of the expression levels of the 1085 genes in the cell cycle bicluster for
the tumors in the OSL2 breast cancer cohort (n = 272). Rows represent genes and columns represent samples annotated with histopathological features
including PAM50 subtype and ER status. Red color indicates high expression levels and blue color indicates low. Boxplots showing the average expression
of genes in the cell cycle bicluster in the (B) OSL2 (n = 272) and (C) TCGA (n = 981) breast cancer cohorts. Kruskal-Wallis test P-values are denoted.
Scatterplots showing the association between average DNA methylation of the cell cycle bicluster-CpGs versus average expression of the genes contained
within the same bicluster by ER status in the OSL2 (D) and TCGA (E) breast cancer cohorts. Pearson correlation coefficients and P-values are denoted
and colored by ER status.

were located nearby (±10 kb) any of the genes contained
within the same bicluster. We found that 36% of the genes
in the cell cycle bicluster were located nearby at least one
CpG in the same bicluster suggesting that many genes in
the cell cycle bicluster may be locally regulated by DNA
methylation in enhancer regions at TFBR of the enriched
TFs including CEBP-�, FOSL1 and FOSL2.

Enhancers can promote gene expression of distant genes
by interacting with promoter regions of their associated
genes through chromatin loop formation (6,7). To assess
the potential physical contact between enhancers with loss
of methylation and expression of their target genes, we ob-
tained ChIA-PET Pol2 data (33) from MCF7- (ER+) and
IM-PET interaction (34) from the HCC1954 (ER–) breast
cancer cell lines. We found that the CpGs-gene pairs in
emQTLs in the cell cycle bicluster were significantly en-
riched in ChIA-PET and IM-PET defined loops (hypergeo-
metric test P-value = 5.1e–3 and 4.7e–4 respectively, Figure
5A). Altogether, 59 CpGs were experimentally confirmed
by ChIA-PET to form physical interactions with 39 unique
genes in the cell cycle bicluster (Supplementary Table S1F),
and 22 unique emQTL CpG-gene loops were confirmed by
IM-PET (Supplementary Table S1G). Altogether, these re-
sults suggest that emQTLs represent direct regulatory links
between DNA methylation at enhancer regions targeted by
proliferation-associated TFs and the expression of the cell
cycle bicluster-genes (Figure 5B).

Identification of potential key drivers of proliferative signal-
ing in breast cancer

Knowing that enhancer methylation at TF binding re-
gions is associated with the regulation of proliferation-
related genes, we next performed a supervised emQTL ap-
proach to more efficiently identify key drivers of carcino-
genic signaling. With the supervised approach, we can in-
clude all emQTLs prior to the filtering step and identify
proliferation-promoting emQTLs that are independent of
the performance of the biclustering algorithm. Using the
supervised approach, we select emQTLs based on the iden-
tified cell cycle bicluster characteristics (see Material and
Methods). We identified 53 proliferation-promoting can-
didate emQTLs in which the majority (79%) show neg-
ative correlations between DNA methylation and gene
expression (Table 1, Supplementary Table S1H). Figure
5C shows one of the potential proliferation-promoting
emQTL in which the CpG (cg00733115) is found experi-
mentally by ChIA-PET to interact with the Pim-1 Proto-
Oncogene, Serine/Threonine Kinase (PIM1) gene found in
the GO CELL CYCLE gene set from the MSigDB (27).
The CpG itself is located in a region with a high abun-
dance of active intergenic enhancer chromatin marks in
Basal-like, Her2-enriched, and Luminal A subtype accord-
ing to ChromHMM (28). Moreover, the CpG overlaps with
the binding region of several members of the FOS fam-
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Figure 5. DNA methylation at enhancers facilitates target gene expression through enhancer-promoter interactions. (A) Bar plot showing the enrichment
of emQTLs in ChIA-PET Pol2 loops and IM-PET loops for the ER+ MCF7 and ER– HCC1954 breast cancer cell lines, respectively. Bar height represents
the enrichment level measured as the ratio between the frequency of emQTLs (CpG-gene pairs) found in the head and tail of a loop over the expected
frequency if such overlaps were to occur at random. Enrichments that are statistically significant (hypergeometric test, BH corrected P-value < 0.05) are
marked with an asterisk. (B) Enhancer hypomethylation at specific enhancers allows TF binding and the transcriptional activation of enhancer target
genes through physical enhancer-promoter interactions by chromatin looping. (C) An example of a potential proliferation-promoting alteration in which
the CpG (cg00733115) has been found in one foot of a ChIA-PET Pol2 loop (red arc) and a gene associated with proliferation (PIM1) is found in the other.
Annotations for active intergenic enhancer regions and active promoters according to ChromHMM that are conserved across the cell lines of a similar
subtype are shown in green and blue color respectively by breast cancer subtype. The binding sites of FOS, FOSL1/2 are also shown. (D) Scatterplot
showing the association between DNA methylation at the emQTL-CpG cg00733115 and its associated gene (PIM1) by ER status in OSL2. Pearson’s
correlation coefficients and P-values are denoted.

ily of proteins including the FOS, FOSL1/2 TFs. The TF
binding region of FOS as indicated in Figure 5C is ob-
tained from the breast epithelial MCF10A cell line. A nega-
tive correlation was observed between DNA methylation of
cg00733115 and the expression of PIM1 in both ER– and
ER+ tumors (Figure 5D). These results suggest that we can
identify promising proliferation-promoting emQTLs using
the supervised emQTL approach.

The cell cycle bicluster associates with prognosis

To investigate the prognostic impact of the identified genes,
we performed survival analysis in the METABRIC breast
cancer cohort (n = 1904). When stratifying tumors by
PAM50 subtype and dividing the patients into two groups
based on the median of the average expression values of the
genes in the cell cycle bicluster, we observe high expression
to be associated with worse prognosis within the Luminal A,
Luminal B and Normal-like breast subtypes (Figure 6A–E,
log-rank P-value = 0.00044, 0.0019 and 0.01 respectively).
When performing the survival analysis independent of sub-
type, we observe a significant association between survival
and expression (Figure 6F, log-rank P-value < 0.0001).

Rediscovery of the immune- and estrogen response related bi-
clusters

Both the immune and the estrogen biclusters rediscovered
in this study were found to overlap with the immune and
estrogen-related clusters first described by Fleischer, Tekpli
et al. (18). The immune bicluster-CpGs were found enriched
in close proximity to TF binding regions of several TFs in-
volved in immune cell homeostasis such as RUNX1, FLI1
and ERG (Supplementary Table S1E). DNA methylation
and gene expression levels of the rediscovered immune bi-
cluster was associated with varying degree of immune infil-
tration (Supplementary Figure S6A, B). Furthermore, im-
mune cells including leukocytes, monocytes, T-cells, and
B-cells showed similar methylation levels at the immune
bicluster CpGs as the tumors with high immune infiltra-
tion. Contrary, the ER-positive MCF7 and ER-negative
MDAMB453 breast cancer cell lines showed methylation
levels similar to the tumors with low immune infiltration
(Supplementary Figure S6A).

Our emQTL-CpGs and genes associated with estrogen
response separated into two biclusters (Figure 2C, Supple-
mentary Table S1A, B). This is likely due to the predomi-
nance of estrogen response-related emQTLs, as the biclus-
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Table 1. Top potential cancer-promoting alterations identified using the supervised emQTL approach. The strength of the correlations and the Bonferroni
corrected P-value is shown for the OSL2 (n = 272) and TCGA (n = 558) breast cancer cohort. The table is ordered by the strength of the negative correlation
in OSL2

Pearson’s correlation coefficient Adjusted P-value

emQTL ID OSL2 TCGA OSL2 TCGA Method

cg00733115 PIM1 –0.55 –0.32 1.36E–21 7.38E–13 ChIA-PET
cg02976539 SLC9A3R1 –0.54 –0.52 2.02E–20 2.69E–38 IM-PET
cg18037834 KRT18 –0.54 –0.51 3.14E–20 2.66E–37 ChIA-PET
cg15880704 PDCD4 –0.54 –0.29 3.78E–20 2.00E–10 ChIA-PET
cg04482712 SLC9A3R1 –0.54 –0.54 7.70E–20 4.59E–42 IM-PET
cg00484122 RHOB –0.54 –0.42 8.75E–20 1.15E–23 ChIA-PET
cg16729850 KRT18 –0.53 –0.51 5.44E–19 1.41E–36 IM-PET
cg21359793 KRT18 –0.52 –0.50 9.20E–19 2.27E–35 IM-PET
cg20812370 PBX1 –0.51 –0.39 6.70E–18 6.52E–20 ChIA-PET
cg12610744 KRT18 –0.51 –0.51 8.58E–18 2.98E–36 IM-PET

Figure 6. Expression of genes in the cell cycle bicluster associates with prognosis. Kaplan-Meier survival curves for the cell cycle bicluster in METABRIC
cohort, for Luminal A (A), Luminal B (B), Basal-like (C), Normal-like (D), Her2-enriched (E) and all breast cancer subtypes (F). Tumors were divided
into two groups based on the median of the average expression of genes in the cell cycle bicluster. P-values obtained by log-rank test are denoted.

tering algorithm favors more equally sized biclusters. The
CpGs in estrogen bicluster 2 and 4 were significantly less
methylated in ER+ compared to ER– tumors (Wilcoxon
rank-sum test, P = 1.06e–18, and 1.48e–18 respectively,
Supplementary Figure S7A, B). The estrogen-related genes
in both biclusters were overexpressed in ER+ tumors com-
pared to the ER– (Wilcoxon rank-sum test, P = 3.16e–24
and 9.25e–20, Supplementary Figure S7C, D). Moreover,
CpGs within each of the estrogen-related biclusters were

enriched in enhancer regions and genomic regions in prox-
imity to TFBR of several TFs associated with estrogen-
response such as ER�, FOXA1 and GATA3 (Supplemen-
tary Table S1D, E). This was observed in both estrogen bi-
clusters which suggests that these two biclusters represent
the same biological pathway. Altogether, these results are
in concordance with the corresponding findings regarding
the estrogen cluster previously described by Fleischer, Tek-
pli et al. (18).
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Bicluster 3 reflects a varying degree of fibroblast infiltration

GSEA indicated that genes in bicluster 3 were related to
processes including EMT, ECM and cell locomotion (Sup-
plementary Table S1C). Contrary to the cell cycle bicluster,
genes and CpGs in the EMT bicluster (Bicluster 3) seems
to a lesser extent to segregated the breast cancer patients ac-
cording to the PAM50 subtypes (Figure 7A, Supplementary
Figure S8A). Fibroblasts are prominent cell types of the
tumor microenvironment and carry out functions related
to ECM remodeling while also being able to migrate (47).
We therefore, hypothesized that this bicluster was linked
to fibroblast infiltration. To examine this, we estimated the
relative amount of fibroblasts for each tumor sample us-
ing the xCell (32) deconvolution tool which is based on
mRNA expression. By dividing the tumors into quartile
groups based on the amount of fibroblast infiltration, we
found the EMT bicluster gene expression levels to be associ-
ated with fibroblast infiltration in OSL2 and TCGA (Figure
7B, C, Kruskal–Wallis test P-value = 1.74e–27 and 3.35e–
20, respectively), i.e. high expression of the EMT bicluster
genes is associated with high fibroblast infiltration. Alto-
gether this suggests that the expression levels of these genes
may be caused by a high expression of the EMT bicluster
genes in tumor-infiltrating fibroblasts rather than the can-
cer cells themselves.

Furthermore, we characterized the CpGs in the EMT bi-
cluster and found them to be enriched in active intergenic
enhancer regions, but to a lower extent than the cell cycle
bicluster CpGs (Supplementary Table S1D). No significant
enrichment of EMT bicluster-CpGs in emQTL with EMT
bicluster genes was observed from the ChIA-PET Pol2 and
IM-PET data (Supplementary Figure S8B). TF enrichment
analysis revealed significant enrichment of the CpGs in the
TFBR of several TFs previously linked to EMT such as
FOSL1 (48), TEAD1 (49), NFIC (50), and TWIST1 (51)
(Supplementary Table S1E). Mean methylation of CpGs in
the EMT bicluster was associated with varying degrees of
fibroblast infiltration in OSL2 and TCGA (Figure 7D, E),
i.e. increasing fibroblast infiltration was associated with de-
creased DNA methylation.

To further support the hypothesis that the EMT biclus-
ter was related to varying degrees of fibroblast infiltration,
rather than differences in the EMT potential of breast tu-
mors we obtained DNA methylation data (Illumina 450k)
from the PMC42 breast cancer cell line before and after
EGF-induces EMT. No prominent change in DNA methy-
lation levels at the EMT bicluster CpGs was observed af-
ter EGF-induced EMT in the PMC42 breast cancer cell
line (Figure 7D, E). Moreover, the cell line displayed similar
methylation levels as the tumors with low fibroblast infiltra-
tion, i.e. high methylation. By contrast, human mammary
fibroblasts were unmethylated at the EMT bicluster-CpGs.
Taken together, these results show that DNA methylation
and the expression level of genes in the EMT bicluster are
mainly caused by fibroblast infiltration.

Cell-type-specific expression of genes in the emQTL-
biclusters by scRNA-seq

Since the tumor microenvironment consists of a highly
dynamic and heterogeneous collection of cells, we used

scRNA-seq data from 14 breast cancer patients (30) to in-
vestigate the cell-type specific expression of a subset of genes
from each bicluster. For the analysis, we selected 10 genes
from each bicluster showing the strongest negative corre-
lation coefficient with an associated emQTL-CpG within
the same bicluster. We found most of the genes from the
cell cycle bicluster to be cancer-specific compared to other
cells types such as immune cells, fibroblasts, and endothe-
lial cells which are prominent cell types of the tumor mi-
croenvironment (Figure 8A, B). Moreover, these genes were
highly expressed by cancer cells from tumors classified as
Her2-enriched and triple-negative breast cancer (TNBC)
subtypes compared to Luminal A and Luminal B (Figure
8C–F). Altogether, this supports the hypothesis that the cell
cycle bicluster genes are important regulators of prolifera-
tion in breast cancer cells. Similarly, to the cell cycle biclus-
ter, the estrogen-related genes were almost exclusively ex-
pressed by cancer cells from ER+ tumors (Figure 8C–F).
Contrary, the genes associated with the EMT- and immune
biclusters were mainly expressed by fibroblasts and immune
cells respectively (Figure 8B).

DISCUSSION

Cancer initiation and progression involve altered prolifera-
tion rates that play an important role in breast cancer patho-
genesis (52,53). Today, little is known about how DNA
methylation contributes to the proliferative phenotype of
breast tumors. By performing genome-wide emQTL anal-
ysis before biclustering of the correlation coefficients, we
identify a previously unreported gene regulatory network
involved in breast cancer carcinogenesis. In ER– breast tu-
mors, we observe hypomethylation at enhancers carrying
TFBR of key proliferation-driving TFs with concomitant
high expression of proliferation-related genes in tumor cells
as confirmed by scRNA-seq. We show that the identified
CpGs and genes were connected through chromatin loops.
Taken together, we show that proliferation in breast cancer
is linked to loss of enhancer methylation and TF binding
through chromatin loops. The causal effects the candidates
have on the observed associations regarding the cancer phe-
notype will be of great interest for future studies.

The proliferation-related CpGs were found significantly
enriched in active intergenic enhancer regions of all
breast cancer subtypes, but most pronouncedly in Basal-
like, Her2-enriched, and Luminal B tumors according to
ChromHMM (28), which are also the most proliferative
subtypes. Using chromatin loop enrichment analysis, we
found the CpGs in the cell cycle bicluster to be significantly
enriched in chromatin loops in both ER+ and ER– cell
lines, thereby strengthening the hypothesis that the tran-
scriptional network associated with proliferation could be
regulated by DNA methylation independent of ER status.
Because the loop data from the ER+ and ER– breast can-
cer cell lines are generated using different technologies the
ER+ and ER– cell lines are not directly comparable and
the results should be interpreted independently. TF enrich-
ment analysis showed an enrichment of the proliferation-
related CpGs nearby TFBR of several TFs known to be
implicated in breast cancer tumorigenesis including CEBP-
�, FOSL1 and FOSL2. The TFBSs of these TFs stored
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Figure 7. The EMT bicluster highlights an association between DNA methylation and fibroblast infiltration. (A) Heatmap showing the unsupervised
clustering of the expression levels of the 936 genes contained within the EMT bicluster for 272 tumor samples from the OSL2 cohort. Rows represent genes
and columns represent tumor samples annotated by histopathological features including PAM50 subtype and ER status. The tumor samples were divided
into quartile groups based on the severity of fibroblast infiltration according to the relative amount of fibroblast in the tumor samples estimated by xCell.
Differences in expression of the EMT bicluster genes between the quartile groups are shown for the OSL2 (B) and TCGA (C) cohorts. Each quartile group
consisted of 68 tumor samples in OSL2 and 139 samples in TCGA. Boxplots showing the average DNA methylation at the 6910 CpGs contained within
the EMT bicluster according to fibroblast infiltration score in (D) OSL2 (n = 272) and (E) TCGA (n = 556). Average DNA methylation values for these
CpGs for in the PMC42-LA before and after EGF induced EMT. Fibroblasts, and the ER+ MCF7 and ER– MDAMB436 breast cancer cell lines are also
included. Kruskal–Wallis test P-values are denoted in the bottom left corner.

in UniBind are based on ChIP-seq data from breast can-
cer cell lines among others. While the CEBP-� TFBS have
been mapped by ChIP-seq in the estrogen receptor-positive
(ER+; MCF7), FOSL1 TFBS have been mapped in the
ER– BT549 and FOSL1/2 in the ER+ MCF7 breast can-
cer cell lines by ChIP-seq respectively. The CEBP family
of TFs are known to be involved in regulating prolifera-
tion, and the CEBP-� member is commonly overexpressed
in ER– tumors compared to ER+ tumors and is positively
associated with tumor grade (41). Several of the Fos fam-
ily TFs have also been implicated in proliferation. FOSL1
binding has previously been found enriched at enhancers
of triple-negative breast cancers and positively associated
with proliferation in ER– and ER+ cell lines (43). Fur-
thermore, FOSL2 overexpression has been linked to pro-
liferation in the triple-negative MDA-MB-231 and Her2-
enriched SK-BR-2 breast cancer cell lines (45). FOS has
previously been shown to be an important regulator of pro-
liferation in the MCF7 breast cancer cell line (42). Here,
we show that the CpGs in close proximity to the TFBS of
these TFs were less methylated in the most proliferative tu-
mor subtypes such as the Basal-like and Her2-enriched tu-
mors. Altogether, we speculate that demethylation of the
cell cycle bicluster-CpGs leads to more frequent binding
of proliferation-related TFs and looping to their associ-
ated gene, thereby causing enhanced expression. The pre-

dictive and prognostic relevance of DNA methylation lev-
els around the genomic regions binding CEBP-�, FOSL1
and FOSL2 constitute interesting regions for further inves-
tigation. At present, there is a lack of ChIP data mapping
genome-wide TF-DNA interactions. Therefore, there may
be other TFs as well involved in TF binding at the speci-
fied enhancers that are not included here and might also be
drivers of proliferation in breast cancer.

By characterizing several aspects of the regulatory path-
ways associated with proliferation in breast cancers, we were
able to identify potential downstream drivers of carcino-
genic signaling relating to proliferation. The identified can-
didate gene with the strongest and most significant nega-
tive correlation was the PIM1 gene which belongs to the
Serine/Threonine protein kinase family of proteins. PIM1
is known to be implicated in the cell cycle, and knockdown
experiments in TNBC cell lines have been shown to de-
creased proliferation and survival (54). Another candidate
was CDKL3 which is a CDK3 homolog belonging to the
cyclin-dependent protein kinase (CDK) family of proteins.
CDKL3 is known to be implicated in cell cycle progression
from G1 to the S phase (55,56). The methylation status of an
emQTL-CpG located in a distal enhancer region was found
linked to the expression of the CDKL3 gene through chro-
matin looping defined by an experimentally defined ChIA-
PET Pol2 loop. A previous study found CDKL3 upregula-
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Figure 8. Cell-type-specific expression of the emQTL-bicluster genes. Combined Uniform Manifold Approximation and Projection (UMAP) plot for all
14 breast cancer samples annotated by cell type (A). Dot plots showing the expression of the selected genes for each bicluster for B all patients and patients
with a (C) Luminal A, (D) Luminal B, (E) Her2-enriched and (F) TNBC. The size of the dot depicts the percentage of cells within each class and the
intensity of the color shows the average expression level of each class.
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tion to be associated with faster-growing HeLa cells derived
from cervical cancer (57). However, less is known about the
influence of CDKL3 upregulation on proliferation in breast
cancer. Another candidate such as MUC1, which is an on-
coprotein, has been linked to proliferation in breast cancer
cell lines upon siRNA knockdown experiments (58). Cy-
clin D1 (CCND1) is involved in the progression of several
cancer types including breast, lung, esophagus, and bladder
cancers. CCND1 is associated with proliferation by regulat-
ing the G1/S-phase transition (59). Knockdown of CCND1
using siRNA has been shown to decrease proliferation rates
in the MCF7 breast cancer cell line (60). Altogether, this
indicates that our identified proliferation-promoting candi-
date genes play key roles in proliferation-related processes
in breast cancer.

Previous studies have linked increased proliferation rates
with prognosis in breast cancers (52,53). Here, we report the
expression of the proliferation-related genes in the cell cy-
cle bicluster to be associated with poorer prognosis within
the established breast cancer subtypes, including Luminal
A and Luminal B. We are thereby identifying a subgroup of
patients which may benefit from more aggressive treatment,
and equally importantly, we identify a subgroup of patients
that may benefit from less treatment.

Fibroblasts, also known as cancer-associated fibroblasts
(CAFs) in a tumor setting, are among the most abundant
cell types of the tumor microenvironment involved in func-
tions related to ECM remodeling (61,62). They play a key
role in promoting tumorigenesis (63). An increasing num-
ber of studies have emphasized a possible link between in-
filtration of CAFs and epigenetic changes in tumor cells.
One of the most characterized CAF-secreted factors, TGF-
�, can mediate epigenetic changes through SOX4 activa-
tion, which in turn modulates the EZH2 histone methyl-
transferase in cancer cells (64). Moreover, aberrant DNA
methylation can occur on a genome-wide scale in tumor
cells treated with TGF-� (65,66). Fibroblast infiltration has
been associated with treatment response and metastatic po-
tential of cancer cells (67–70). By using the xCell (32) de-
convolution tool which is based on gene expression data,
we found associations between fibroblast infiltration versus
expression- and methylation levels of genes and CpGs in the
EMT bicluster in OSL2 and TCGA (Figure 7B–E). Lower
DNA methylation at the EMT bicluster-CpGs was associ-
ated with higher fibroblast infiltration, and fibroblasts were
unmethylated at these CpGs compared to tumor tissue. The
emQTL analysis highlights how DNA methylation and gene
expression levels may reflect infiltration levels in the tumor
microenvironment. Even though the EMT bicluster is asso-
ciated with fibroblast infiltration, there may be a less pro-
nounced EMT-related signal from the tumors themselves
represented in the EMT bicluster caused by fibroblast infil-
tration or other factors. Therefore, a more detailed study of
the epigenetic effects of crosstalk between fibroblasts and
tumor cells regarding the EMT bicluster would be of future
interest.

In this study, we provide genome-wide evidence that
DNA methylation at intergenic enhancer regions is a key
regulator of proliferation in breast cancers. The CpG sites
involved were proximal to TFBSs of CEBP-�, FOSL1 and
FOSL2, which are TFs associated with proliferation in

breast cancers. Altogether, we establish an association be-
tween DNA methylation and tumor phenotype reflecting
the proliferative potential of breast cancer tumors.

DATA AVAILABILITY

R-code related to the emQTL analysis together with spec-
tral co-clustering code in Python is available at GitHub
(https://github.com/JorgenAnkill/emQTL). Level 3 gene ex-
pression and DNA methylation data from the TCGA breast
cancer cohort can be found at the TCGA data portal at
https://tcga-data.nci.nih.gov (21). ChromHMM segmenta-
tion data from breast cancer cell lines were obtained from
Xi et al. (28). TF-DNA interactions in available from the
UniBind database at https://unibind2018.uio.no (29).

Clinical data including PAM50 classification and mRNA
expression data from the OSL2 breast cancer cohort can be
obtained from GEO with accession number GSE58215 (20)
and DNA methylation data (n = 277) is available at GEO
with the accession number GSE84207 (18). The sample key
to combine GSE58215 (gene expression) and GSE84207
(DNA methylation) for the OSL2 patient cohort is avail-
able upon request. Expression data from METABRIC is
available from the European Genome Phenome Achieve
(EGAS00000000083; https://ega-archive.org/studies/) (22).
ChIA-PET data from MCF7 can be obtained from EN-
CODE (ENCSR000CAA; https://www.encodeproject.org/
experiments/) (33) and IM-PET data from HCC1954
is available from the 4D genome data portal at https:
//4dgenome.research.chop.edu/Download.html (35). Illu-
mina HumanMethylation450 BeadChip data from 17 nor-
mal healthy samples obtained by mammoplasty reduc-
tions can be obtained from GSE60185 (3). DNA methy-
lation data from cell lines used in this study is available
from GEO: PMC42-LA (GSE97853), human mammary
fibroblasts (GSE74877), T-cells (GSE79144), Monocytes
(GSE68456), Leukocytes (GSE69270), B-cells (GSE68456),
MCF7 (GSE69188) and MDAMBA453 (GSE124368).
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Supplementary Data are available at NAR Cancer Online.
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