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@ Statistical methods for genomic data screening
@ Two-sample tests

© Correction for multiple testing
@ Multiple testing correction procedures: FWER vs. FDR
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Statistical methods for genomic data screening

Screening for candidates

Screening is a testing problem

A gene is declared differentially expressed, if an observed difference
between two experimental conditions is greater than what would be
expected under the null hypothesis.

Usually effect reported as Fold Change = X/Y
or log, fold change = log,(X/Y) = log,(X) — log,(Y)
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Statistical methods for genomic data screening

Screening for candidates

Screening is a testing problem

A gene is declared differentially expressed, if an observed difference
between two experimental conditions is greater than what would be
expected under the null hypothesis.

Usually effect reported as Fold Change = X/Y
or log, fold change = log,(X/Y) = log,(X) — log,(Y)

Two-sample tests
@ parametric tests, e.g. t-test
@ non-parametric tests, e.g. Wilcoxon rank sum tests

o distribution-free tests, e.g. permutation tests
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Statistical methods for genomic data screening Two-sample tests

Student's t-test
o Two samples x = {x1..., x5} and y = {y1,...,yn,}

Null hypothesis: Ho : pix = py
Alternative hypothesis:  Hy : puy # py,
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Statistical methods for genomic data screening Two-sample tests

Student’s t-test
o Two samples x = {x1..., x5} and y = {y1,...,yn,}

Null hypothesis: Ho : pix = py
Alternative hypothesis:  Hy : puy # py,

@ The two-sample test statistic is
X—Yy Ho
T: Ee— t —
s /71/,7)(_'_ 1/ny nx+ny 2
where
(nx - ].)5)2< + (ny - 1)5}2,
(nx—=1)+(n,— 1)

is the pooled variance estimate, X, y and s2, 5)2, are sample means and
sample variances, ny, n, sample sizes

2=
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Statistical methods for genomic data screening Two-sample tests

Student’s t-test

@ Compute the p-value for the observed value t of test statistic T as
follows:
p=1— Py (T < t])

@ Decision rule: Reject Hp if p < «

@ State the result: If p < «, there is a statistically significant difference
between group means at the significance level a.
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Statistical methods for genomic data screening Two-sample tests

Potential problems when performing 2-sample tests

@ Small sample sizes — not for this course!
o The usual asymptotics might not hold (e.g. assumption of asymptotic
normal distributions for t-test)
— use permutation tests
e Unreliable estimates of variability
— stabilise individual variance estimates through shrinkage to global
estimate

@ Multiplicity problem

e Thousands of hypotheses are tested simultaneously,
increasing the chance of false positive findings.
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Correction for multiple testing

© Correction for multiple testing
@ Multiple testing correction procedures: FWER vs. FDR
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Why correct for multiple testing anyway?

jid i

copyright: xked.com/882/

JELLY BEANS WE FOUND NO THAT SEMLES THAT.
CAUSE ACNE! LINK BETWEEN .
THEAR ITS
SCIENTISTS) JELLY BEANS AND ACEE%HIM C%Z
w:-:sncmzl AOiE (P> 0.05), THAT CAUSES T
Bz.rrw:‘u
kum' RUCHRSIS) -
l MU CAET!|
t f \' @ % .' T % k.
WE. FOUNDND WE FOUNDNO WE FOLND NO WE FOUND NG WE FOUNDNG
LINK BETWEEN LINK BERJEEN LINK GETWEEN LINK GETJEEN LINK GEJEEN
RRPE JELY BROWN JELY P JELLY Jeuy Jeuy
BEANS D ANE. BEANS ARDANE. | | BEANS Ao AQIE BEANS D ACNE BEANS Peid ACIE
(p:-ojm;), (p>t;os), (p>00s5), (P>0.05) (p>00s5)




Why correct for multiple testing anyway?

JELLY BEANS | | we ronono | [ THAT semes AT
ChusE £ TSomy
K == Neys == TE%“’“
GREEN JELLY

se | BEANS LINKED
I T ACNE!

G5, ConfrOeNE

:ﬁ:dNDN .'.‘.1'-'-"'2'_';.' e i % g%

RURPE TEL 5% CHANCE &= — Jewr

s i %coucmwz Somuisic. W s
) —T KT i

?\% == == 9%

[ VNIV TN a’&

copyright: xked.com/882/



Correction for multiple testing

From single to multiple tests

Test Problem

Null hypothesis Hp vs. alternative hypothesis H;

H, not rejected

H, rejected

H, true

o.k.

o (Type | error)

H, false

B (Type Il error)

o.k.

Construction of the Test

Control the Type | error at a fixed significance level « (usually 0.05)
and choose a test statistic that maximizes the power 1 — (3
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Correction for multiple testing

From single to multiple tests

Suppose we perform 10 tests, each with significance level o = 0.05.

Suppose that Hp is true, so we should never reject. What is the probability
that we will get at least one false positive decision?
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Correction for multiple testing

From single to multiple tests

Suppose we perform 10 tests, each with significance level o = 0.05.
Suppose that Hp is true, so we should never reject. What is the probability
that we will get at least one false positive decision?

P(at least one false positive decision) =
= 1 - P(all true negatives) = 1 — (1 — 0.05)!% = 1 — (0.95)1° = 0.401
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Correction for multiple testing
From single to multiple tests

Suppose we perform 10 tests, each with significance level o = 0.05.

Suppose that Hp is true, so we should never reject. What is the probability
that we will get at least one false positive decision?

P(at least one false positive decision) =

= 1 - P(all true negatives) = 1 — (1 — 0.05)!% = 1 — (0.95)1° = 0.401
Note that: = the probability is 1 — (1 — 0.05)
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Correction for multiple testing
From single to multiple tests

Suppose we perform 10 tests, each with significance level o = 0.05.

Suppose that Hp is true, so we should never reject. What is the probability
that we will get at least one false positive decision?

P(at least one false positive decision) =
= 1 - P(all true negatives) = 1 — (1 — 0.05)!% = 1 — (0.95)1° = 0.401
Note that: = the probability is 1 — (1 — 0.05)

If increasing the number of tests, probability goes to 1

—1—(1-0.05) = 0.994
—1—(1-0.05)"0 ~1
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Correction for multiple testing

From single to multiple tests

Suppose we perform 10 tests, each with significance level o = 0.05.
Suppose that Hp is true, so we should never reject. What is the probability
that we will get at least one false positive decision?

P(at least one false positive decision) =
= 1 - P(all true negatives) = 1 — (1 — 0.05)!% = 1 — (0.95)1° = 0.401
Note that: = the probability is 1 — (1 — 0.05)

If increasing the number of tests, probability goes to 1

—1—(1-0.05) = 0.994
—1—(1-0.05)"0 ~1

Take-home message

When performing many statistical tests, which means when screening
many variables (genes), then we are certain to select false positives!
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Correction for multiple testing

How to correct for this? Intuition

Adjusting for M tests (AKA Bonferroni correction)
Adjust the significance level «; of each test so that globally the

significance level is the wanted (o = global significance level):

aj =

%’ i=1,..M

Increasing M (number of tests) decreases significance level «; of each
single test

10 tests — 1 — (1 — )Y = 0.049
100 tests — 1 — (1 — %)% = 0.049

1000 tests — 1 — (1 — =235)"%% = 0.049
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Correction for multiple testing

How to correct for this? Intuition

Adjusting for M tests (AKA Bonferroni correction)
Adjust the significance level «; of each test so that globally the

significance level is the wanted (o = global significance level):

Q=

%’ i=1,..M

Increasing M (number of tests) decreases significance level «; of each
single test

10 tests — 1 — (1 — )Y = 0.049
100 tests — 1 — (1 — %)% = 0.049

1000 tests — 1 — (1 — =235)"%% = 0.049

Intuitive take-home message

Multiple Testing Procedures protect against false positive conclusions
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Correction for multiple testing

Multiple Testing Procedures: Counting Errors

Assume we are testing M null hypotheses: Hp;,i=1,..., M

Possible scheme of the situation:

Multiple testing correction procedures: FWER vs. FDR

nr. NOT rejected Hp;

nr. rejected Hpy; | tot

nr. TRUE Ho,' V ho
nr. FALSE Hy; T hy
G-R R G

with:
@ hyp = number of true null hypotheses

@ R = number of rejected null hypotheses

@ V = number of type | errors (false positives)

e T = number of type Il errors (false negatives)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Controlling for Type | error rates

Family-wise error rate (FWER)

Probability of at least one false positive (type | error)

FWER := P(V > 1)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Controlling for Type | error rates

Family-wise error rate (FWER)

Probability of at least one false positive (type | error)

FWER := P(V > 1)

False discovery rate (FDR)

Expected proportion of false positives (type | error) among the total
number of rejected null hypotheses

FDR := E(Q), Q:=

VIR, if R>0
0, if R=0
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Comparison FWER vs FDR

FWER
@ extremely conservative, only few genes are called significant

@ used when we need to be certain that all findings are truly positive
(example: when making decisions about the admittance of medical
treatments)

@ can miss out on potentially important genes (false negatives)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Comparison FWER vs FDR

FWER
@ extremely conservative, only few genes are called significant

@ used when we need to be certain that all findings are truly positive
(example: when making decisions about the admittance of medical
treatments)

@ can miss out on potentially important genes (false negatives)

FDR
o used if FWER is too stringent, that is, when more interested in
having more true positives (the false positives can be sorted out in
subsequent expensive experiments)

@ Cool fact: by controlling the FDR one can choose how many of the
subsequent experiments one is willing to perform in vain
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Adjusting p-values for multiple testing

@ For each variable (ex: gene) i=1,..., M we test the null hypothesis
Ho; and obtain the (unadjusted) p-value p;

@ We then apply a correction method (next slide) and obtain the
adjusted p-value p;

o We reject Hp; at significance level o if pj <

How? Two possibilities

Single Step Procedures
Take M unadjusted p-values and adjust them independently

Step-Wise Procedures
Adjust p-values sequentially (ex: from the smallest to the largest)
More powerful
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Common adjustment methods

For controlling FWER< a: Bonferroni correction (remember the intuition!)
@ single-step procedure

e pi = min(M x p;, 1)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Common adjustment methods

For controlling FWER< a: Bonferroni correction (remember the intuition!)
@ single-step procedure

e pf =min(M x p;,1)

For controlling FDR< «: Benjamini & Hochberg correction
o step-wise procedure, independence assumption
@ how to adjust?
© first order observed p;'s such that p1y) < pi2) < ... < pw)
Q pf =min=. .. m (min(’\—: X P> 1))

16/20



Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values:
0.001, 0.021, 0.34, 0.88, 0.011

rank(k) pj FWER (Bonferroni) p; | FDR (Benj.-Hochb.) p}
0.001
0.011
0.021
0.34
0.88

Gl W N

* significant at 0.05 level

Bonferroni: p; = min(M x p;,1)
Benjamini-Hochberg: pf = miny=; . m (min("—k/’ X Py 1))
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values:
0.001, 0.021, 0.34, 0.88, 0.011

rank(k) pj FWER (Bonferroni) p; | FDR (Benj.-Hochb.) p}
1 0.001 | 0.005*
2 0.011 | 0.055
3 0.021 | 0.105
4 034 |1
5 088 |1

* significant at 0.05 level

Bonferroni: p; = min(M x p;,1)
Benjamini-Hochberg: pf = miny=; . m (min("—k/’ X Py 1))
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values:
0.001, 0.021, 0.34, 0.88, 0.011

rank(k) pj FWER (Bonferroni) p; | FDR (Benj.-Hochb.) p}
1 0.001 | 0.005* 0.005*
2 0.011 | 0.055 0.0275*
3 0.021 | 0.105 0.035*
4 034 |1 0.425
5 088 |1 0.88

* significant at 0.05 level

Bonferroni: p; = min(M x p;,1)
Benjamini-Hochberg: pf = miny=; . m (min("—k/’ X Py 1))
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Take-home messages

Screening genes (for ex. differentially expressed ones) is a statistical
testing problem: we simultaneously test thousands of null hypotheses }

@ Unspecific gene filtering can reduce the number of tests

o Multiple testing procedures control for the different kinds of type |
error rates such as FWER and FDR
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Take-home messages

Screening genes (for ex. differentially expressed ones) is a statistical
testing problem: we simultaneously test thousands of null hypotheses J

@ Unspecific gene filtering can reduce the number of tests

o Multiple testing procedures control for the different kinds of type |
error rates such as FWER and FDR

“For outcome-related gene finding, the most common and serious
flaw was an inadequate, unclear, or unstated method for control-
ling the number of false-positive differentially expressed genes.”
(Dupuy and Simon, 2007)*

'Dupuy A., & Simon R. (2007). Critical Review of Published Microarray Studies for
Cancer Outcome and Guidelines on Statistical Analysis and Reporting, J Nat/ Cancer

Inst, 99, 147-157.
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