Data screening and pre-processing multiple testing

Valeria Vitelli Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MED3007

Statistical Principles in Genomics: an Introduction with Rstudio 14.01.2025

Statistical methods for genomic data screening

• Two-sample tests

2 Correction for multiple testing

• Multiple testing correction procedures: FWER vs. FDR

Screening for candidates

Screening is a testing problem

A gene is declared **differentially expressed**, if an observed difference between two experimental conditions is greater than what would be expected under the null hypothesis.

Usually **effect** reported as Fold Change = X/Yor \log_2 fold change = $\log_2(X/Y) = \log_2(X) - \log_2(Y)$

Two-sample tests

- parametric tests, e.g. *t*-test
- non-parametric tests, e.g. Wilcoxon rank sum tests
- distribution-free tests, e.g. permutation tests

Screening for candidates

Screening is a testing problem

A gene is declared **differentially expressed**, if an observed difference between two experimental conditions is greater than what would be expected under the null hypothesis.

Usually **effect** reported as Fold Change = X/Yor \log_2 fold change = $\log_2(X/Y) = \log_2(X) - \log_2(Y)$

Two-sample tests

- parametric tests, e.g. *t*-test
- non-parametric tests, e.g. Wilcoxon rank sum tests
- distribution-free tests, e.g. permutation tests

Student's t-test

• Two samples
$$x = \{x_1 \dots, x_{n_x}\}$$
 and $y = \{y_1, \dots, y_{n_y}\}$

• Null hypothesis: $H_0: \mu_x = \mu_y$ Alternative hypothesis: $H_1: \mu_x \neq \mu_y$

• The two-sample test statistic is

$$T = \frac{\overline{x} - \overline{y}}{s\sqrt{1/n_x + 1/n_y}} \stackrel{H_0}{\sim} t_{n_x + n_y - 2}$$

where

$$s^{2} = rac{(n_{x}-1)s_{x}^{2} + (n_{y}-1)s_{y}^{2}}{(n_{x}-1) + (n_{y}-1)}$$

is the pooled variance estimate, \bar{x} , \bar{y} and s_x^2 , s_y^2 are sample means and sample variances, n_x , n_y sample sizes

Student's t-test

• Two samples
$$x = \{x_1 \dots, x_{n_x}\}$$
 and $y = \{y_1, \dots, y_{n_y}\}$

• Null hypothesis: $H_0: \mu_x = \mu_y$ Alternative hypothesis: $H_1: \mu_x \neq \mu_y$

• The two-sample test statistic is

$$T = \frac{\overline{x} - \overline{y}}{s\sqrt{1/n_x + 1/n_y}} \stackrel{H_0}{\sim} t_{n_x + n_y - 2}$$

where

$$s^2 = rac{(n_x-1)s_x^2 + (n_y-1)s_y^2}{(n_x-1) + (n_y-1)}$$

is the pooled variance estimate, \bar{x} , \bar{y} and s_x^2 , s_y^2 are sample means and sample variances, n_x , n_y sample sizes

Student's t-test

• Compute the *p*-value for the observed value *t* of test statistic *T* as follows:

$$p = 1 - P_{H_0}(|T| \le |t|)$$

- Decision rule: Reject H_0 if $p \leq \alpha$
- State the result: If p ≤ α, there is a statistically significant difference between group means at the significance level α.

Potential problems when performing 2-sample tests

• Small sample sizes \rightarrow not for this course!

- The usual asymptotics might not hold (e.g. assumption of asymptotic normal distributions for t-test)
 - \rightarrow use permutation tests
- Unreliable estimates of variability

 \rightarrow stabilise individual variance estimates through shrinkage to global estimate

• Multiplicity problem

• Thousands of hypotheses are tested simultaneously, increasing the chance of false positive findings.

Statistical methods for genomic data screening Two-sample tests

2 Correction for multiple testing

• Multiple testing correction procedures: FWER vs. FDR

Why correct for multiple testing anyway?

copyright: xkcd.com/882/

Why correct for multiple testing anyway?

copyright: xkcd.com/882/

Test Problem

Null hypothesis H_0 vs. alternative hypothesis H_1

	H ₀ not rejected	H ₀ rejected
H ₀ true	o.k.	α (Type I error)
H₀ false	β (Type II error)	o.k.

Construction of the Test

Control the Type I error at a fixed significance level α (usually 0.05) and choose a test statistic that maximizes the power 1 – β

Suppose we perform **10 tests**, each with significance level $\alpha = 0.05$. Suppose that H_0 is true, so we should never reject. What is the probability that we will get at least one false positive decision?

P(at least one false positive decision) = = 1 - P(all true negatives) = $1 - (1 - 0.05)^{10} = 1 - (0.95)^{10} = 0.401$ Note that: 10 tests \Rightarrow the probability is $1 - (1 - 0.05)^{10}$

If increasing the number of tests, probability goes to 1 100 tests $\rightarrow 1 - (1 - 0.05)^{100} = 0.994$ 1000 tests $\rightarrow 1 - (1 - 0.05)^{1000} \approx 1$

Take-home message

Suppose we perform **10 tests**, each with significance level $\alpha = 0.05$. Suppose that H_0 is true, so we should never reject. What is the probability that we will get at least one false positive decision?

P(at least one false positive decision) = = 1 - P(all true negatives) = $1 - (1 - 0.05)^{10} = 1 - (0.95)^{10} = 0.401$ Note that: 10 tests \Rightarrow the probability is $1 - (1 - 0.05)^{10}$

If increasing the number of tests, probability goes to 1 100 tests $\rightarrow 1 - (1 - 0.05)^{100} = 0.994$ 1000 tests $\rightarrow 1 - (1 - 0.05)^{1000} \approx 1$

Take-home message

Suppose we perform **10 tests**, each with significance level $\alpha = 0.05$. Suppose that H_0 is true, so we should never reject. What is the probability that we will get at least one false positive decision?

P(at least one false positive decision) = = 1 - P(all true negatives) = $1 - (1 - 0.05)^{10} = 1 - (0.95)^{10} = 0.401$ Note that: 10 tests \Rightarrow the probability is $1 - (1 - 0.05)^{10}$

If increasing the number of tests, probability goes to 1 100 tests $\rightarrow 1 - (1 - 0.05)^{100} = 0.994$ 1000 tests $\rightarrow 1 - (1 - 0.05)^{1000} \approx 1$

Take-home message

Suppose we perform **10 tests**, each with significance level $\alpha = 0.05$. Suppose that H_0 is true, so we should never reject. What is the probability that we will get at least one false positive decision?

P(at least one false positive decision) = = 1 - P(all true negatives) = $1 - (1 - 0.05)^{10} = 1 - (0.95)^{10} = 0.401$ Note that: 10 tests \Rightarrow the probability is $1 - (1 - 0.05)^{10}$

If **increasing the number of tests**, probability goes to 1 100 tests $\rightarrow 1 - (1 - 0.05)^{100} = 0.994$

 $100 \text{ tests} \rightarrow 1 - (1 - 0.05)^{1000} \approx 1$ $1000 \text{ tests} \rightarrow 1 - (1 - 0.05)^{1000} \approx 1$

Take-home message

Suppose we perform **10 tests**, each with significance level $\alpha = 0.05$. Suppose that H_0 is true, so we should never reject. What is the probability that we will get at least one false positive decision?

P(at least one false positive decision) = = 1 - P(all true negatives) = $1 - (1 - 0.05)^{10} = 1 - (0.95)^{10} = 0.401$ Note that: 10 tests \Rightarrow the probability is $1 - (1 - 0.05)^{10}$

If increasing the number of tests, probability goes to $\boldsymbol{1}$

 $\begin{array}{l} 100 \ \text{tests} \rightarrow 1 - (1 - 0.05)^{100} = 0.994 \\ 1000 \ \text{tests} \rightarrow 1 - (1 - 0.05)^{1000} \approx 1 \end{array}$

Take-home message

How to correct for this? Intuition

Adjusting for *M* tests (AKA Bonferroni correction)

Adjust the significance level α_i of each test so that globally the significance level is the wanted (α = global significance level):

$$\alpha_i = \frac{\alpha}{M}, \qquad i = 1, ..., M$$

Increasing M (number of tests) **decreases** significance level α_i of each single test

$$\begin{array}{l} 10 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{10})^{10} = 0.049 \\ 100 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{100})^{100} = 0.049 \\ 1000 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{1000})^{1000} = 0.049 \end{array}$$

Intuitive take-home message

Multiple Testing Procedures protect against false positive conclusions

How to correct for this? Intuition

Adjusting for *M* tests (AKA Bonferroni correction)

Adjust the significance level α_i of each test so that globally the significance level is the wanted (α = global significance level):

$$\alpha_i = \frac{\alpha}{M}, \qquad i = 1, ..., M$$

Increasing M (number of tests) **decreases** significance level α_i of each single test

$$\begin{array}{l} 10 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{10})^{10} = 0.049 \\ 100 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{100})^{100} = 0.049 \\ 1000 \text{ tests} \rightarrow 1 - (1 - \frac{.05}{1000})^{1000} = 0.049 \end{array}$$

Intuitive take-home message

Multiple Testing Procedures protect against false positive conclusions

Multiple Testing Procedures: Counting Errors

Assume we are testing M null hypotheses: H_{0i} , i = 1, ..., M

Possible scheme of the situation:

	nr. NOT rejected H _{0i}	nr. rejected H _{0i}	tot
nr. TRUE H _{0i}	U	V	h_0
nr. FALSE H _{0i}	Т	S	h_1
	G - R	R	G

with:

- $h_0 =$ number of true null hypotheses
- R = number of rejected null hypotheses
- V = number of type I errors (false positives)
- T = number of type II errors (false negatives)

Controlling for Type I error rates

Family-wise error rate (FWER)

Probability of at least one false positive (type I error)

 $FWER := P(V \ge 1)$

False discovery rate (FDR)

Expected proportion of false positives (type I error) among the total number of rejected null hypotheses

$$FDR := E(Q), \quad Q := \begin{cases} V/R, & \text{if } R > 0\\ 0, & \text{if } R = 0 \end{cases}$$

Controlling for Type I error rates

Family-wise error rate (FWER)

Probability of at least one false positive (type I error)

 $\mathsf{FWER} := P(V \ge 1)$

False discovery rate (FDR)

Expected proportion of false positives (type I error) among the total number of rejected null hypotheses

$$\mathsf{FDR} := E(Q), \quad Q := \begin{cases} V/R, & \text{if } R > 0\\ 0, & \text{if } R = 0 \end{cases}$$

Comparison FWER vs FDR

FWER

- extremely conservative, only few genes are called significant
- used when we **need to be certain** that all findings are truly positive (example: when making decisions about the admittance of medical treatments)
- can miss out on potentially important genes (false negatives)

FDR

- **used if FWER is too stringent,** that is, when more interested in having more true positives (the false positives can be sorted out in subsequent expensive experiments)
- **Cool fact:** by controlling the FDR one can choose how many of the subsequent experiments one is willing to perform in vain

Comparison FWER vs FDR

FWER

- extremely conservative, only few genes are called significant
- used when we **need to be certain** that all findings are truly positive (example: when making decisions about the admittance of medical treatments)
- can miss out on potentially important genes (false negatives)

FDR

- **used if FWER is too stringent,** that is, when more interested in having more true positives (the false positives can be sorted out in subsequent expensive experiments)
- **Cool fact:** by controlling the FDR one can choose how many of the subsequent experiments one is willing to perform in vain

Adjusting p-values for multiple testing

- For each variable (ex: gene) i = 1, ..., M we test the null hypothesis H_{0i} and obtain the (unadjusted) p-value p_i
- We then apply a correction method (next slide) and obtain the **adjusted p-value** p_i^*
- We reject H_{0i} at significance level α if $p_i^* < \alpha$

How? Two possibilities

Single Step Procedures

Take M unadjusted p-values and adjust them independently

Step-Wise Procedures

Adjust p-values sequentially (ex: from the smallest to the largest) More powerful

Common adjustment methods

For controlling FWER< α : Bonferroni correction (remember the intuition!)

- single-step procedure
- $p_i^* = \min(M \times p_i, 1)$

For controlling FDR< α : Benjamini & Hochberg correction

- step-wise procedure, independence assumption
- how to adjust?
 - () first order observed p_i 's such that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(M)}$

Common adjustment methods

For controlling FWER< α : Bonferroni correction (remember the intuition!)

- single-step procedure
- $p_i^* = \min(M \times p_i, 1)$

For controlling FDR< α : Benjamini & Hochberg correction

- step-wise procedure, independence assumption
- how to adjust?
 - **(**) first order observed p_i 's such that $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(M)}$

2
$$p_i^* = \min_{k=i,\ldots,M} \left(\min(\frac{M}{k} \times p_{(k)}, 1) \right)$$

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values: 0.001, 0.021, 0.34, 0.88, 0.011 $\,$

rank(k)	p _i	FWER (Bonferroni) p_i^*	FDR (BenjHochb.) p_i^*
1	0.001		
2	0.011		
3	0.021		
4	0.34		
5	0.88		

* significant at 0.05 level

Bonferroni: $p_i^* = \min(M \times p_i, 1)$ Benjamini-Hochberg: $p_i^* = \min_{k=i,...,M} \left(\min(\frac{M}{k} \times p_{(k)}, 1) \right)$

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values: 0.001, 0.021, 0.34, 0.88, 0.011 $\,$

rank(k)	pi	FWER (Bonferroni) p_i^*	FDR (BenjHochb.) p_i^*
1	0.001	0.005*	
2	0.011	0.055	
3	0.021	0.105	
4	0.34	1	
5	0.88	1	

* significant at 0.05 level

Bonferroni: $p_i^* = \min(M \times p_i, 1)$ Benjamini-Hochberg: $p_i^* = \min_{k=i,...,M} \left(\min(\frac{M}{k} \times p_{(k)}, 1) \right)$

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values: 0.001, 0.021, 0.34, 0.88, 0.011 $\,$

rank(k)	p _i	FWER (Bonferroni) p_i^*	FDR (BenjHochb.) p_i^*
1	0.001	0.005*	0.005*
2	0.011	0.055	0.0275*
3	0.021	0.105	0.035*
4	0.34	1	0.425
5	0.88	1	0.88

* significant at 0.05 level

Bonferroni: $p_i^* = \min(M \times p_i, 1)$ Benjamini-Hochberg: $p_i^* = \min_{k=i,...,M} \left(\min(\frac{M}{k} \times p_{(k)}, 1) \right)$

Take-home messages

Screening genes (for ex. differentially expressed ones) is a statistical testing problem: we simultaneously test thousands of null hypotheses

- Unspecific gene filtering can reduce the number of tests
- Multiple testing procedures control for the different kinds of type I error rates such as FWER and FDR

"For outcome-related gene finding, the most common and serious flaw was an inadequate, unclear, or unstated method for controlling the number of false-positive differentially expressed genes." (Dupuy and Simon, 2007)¹

¹Dupuy A., & Simon R. (2007). Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting, *J Natl Cancer Inst*, 99, 147–157.

Take-home messages

Screening genes (for ex. differentially expressed ones) is a statistical testing problem: we simultaneously test thousands of null hypotheses

- Unspecific gene filtering can reduce the number of tests
- Multiple testing procedures control for the different kinds of type I error rates such as FWER and FDR

"For outcome-related gene finding, the most common and serious flaw was an inadequate, unclear, or unstated method for controlling the number of false-positive differentially expressed genes." (Dupuy and Simon, 2007)¹

¹Dupuy A., & Simon R. (2007). Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting, *J Natl Cancer Inst*, 99, 147–157.