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Statistical methods for genomic data screening

Screening for candidates

Screening is a testing problem
A gene is declared differentially expressed, if an observed difference
between two experimental conditions is greater than what would be
expected under the null hypothesis.

Usually effect reported as Fold Change = X/Y
or log2 fold change = log2(X/Y) = log2(X)− log2(Y)

Two-sample tests
parametric tests, e.g. t-test
non-parametric tests, e.g. Wilcoxon rank sum tests
distribution-free tests, e.g. permutation tests
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Statistical methods for genomic data screening Two-sample tests

Student’s t-test

Two samples x = {x1 . . . , xnx} and y = {y1, . . . , yny}

Null hypothesis: H0 : µx = µy
Alternative hypothesis: H1 : µx ̸= µy

The two-sample test statistic is

T =
x − y

s
√

1/nx + 1/ny

H0∼ tnx+ny−2

where

s2 =
(nx − 1)s2

x + (ny − 1)s2
y

(nx − 1) + (ny − 1)
is the pooled variance estimate, x, y and s2

x, s2
y are sample means and

sample variances, nx, ny sample sizes
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Statistical methods for genomic data screening Two-sample tests

Student’s t-test

Compute the p-value for the observed value t of test statistic T as
follows:

p = 1− PH0(|T| ≤ |t|)

Decision rule: Reject H0 if p ≤ α

State the result: If p ≤ α, there is a statistically significant difference
between group means at the significance level α.
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Statistical methods for genomic data screening Two-sample tests

Potential problems when performing 2-sample tests

Small sample sizes → not for this course!
The usual asymptotics might not hold (e.g. assumption of asymptotic
normal distributions for t-test)
→ use permutation tests
Unreliable estimates of variability
→ stabilise individual variance estimates through shrinkage to global
estimate

Multiplicity problem
Thousands of hypotheses are tested simultaneously,
increasing the chance of false positive findings.
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Correction for multiple testing
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Why correct for multiple testing anyway?
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Correction for multiple testing

From single to multiple tests

Test Problem
Null hypothesis H0 vs. alternative hypothesis H1

Construction of the Test
Control the Type I error at a fixed significance level α (usually 0.05)
and choose a test statistic that maximizes the power 1− β
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Correction for multiple testing

From single to multiple tests
Suppose we perform 10 tests, each with significance level α = 0.05.
Suppose that H0 is true, so we should never reject. What is the probability
that we will get at least one false positive decision?

P(at least one false positive decision) =
= 1 - P(all true negatives) = 1− (1− 0.05)10 = 1− (0.95)10 = 0.401

Note that: 10 tests ⇒ the probability is 1− (1− 0.05)10

If increasing the number of tests, probability goes to 1
100 tests → 1− (1− 0.05)100 = 0.994
1000 tests → 1− (1− 0.05)1000 ≈ 1

Take-home message
When performing many statistical tests, which means when screening
many variables (genes), then we are certain to select false positives!
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Correction for multiple testing

How to correct for this? Intuition

Adjusting for M tests (AKA Bonferroni correction)
Adjust the significance level αi of each test so that globally the
significance level is the wanted (α = global significance level):

αi =
α

M , i = 1, ...,M

Increasing M (number of tests) decreases significance level αi of each
single test
10 tests → 1− (1− .05

10 )
10 = 0.049

100 tests → 1− (1− .05
100)

100 = 0.049
1000 tests → 1− (1− .05

1000)
1000 = 0.049

Intuitive take-home message
Multiple Testing Procedures protect against false positive conclusions
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Multiple Testing Procedures: Counting Errors

Assume we are testing M null hypotheses: H0i, i = 1, . . . ,M
Possible scheme of the situation:

nr. NOT rejected H0i nr. rejected H0i tot
nr. TRUE H0i U V h0
nr. FALSE H0i T S h1

G - R R G

with:
h0 = number of true null hypotheses
R = number of rejected null hypotheses
V = number of type I errors (false positives)
T = number of type II errors (false negatives)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Controlling for Type I error rates

Family-wise error rate (FWER)
Probability of at least one false positive (type I error)

FWER := P(V ≥ 1)

False discovery rate (FDR)
Expected proportion of false positives (type I error) among the total
number of rejected null hypotheses

FDR := E(Q), Q :=

{
V/R, if R > 0
0, if R = 0
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Comparison FWER vs FDR

FWER
extremely conservative, only few genes are called significant
used when we need to be certain that all findings are truly positive
(example: when making decisions about the admittance of medical
treatments)
can miss out on potentially important genes (false negatives)

FDR
used if FWER is too stringent, that is, when more interested in
having more true positives (the false positives can be sorted out in
subsequent expensive experiments)
Cool fact: by controlling the FDR one can choose how many of the
subsequent experiments one is willing to perform in vain
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Adjusting p-values for multiple testing

For each variable (ex: gene) i = 1, . . . ,M we test the null hypothesis
H0i and obtain the (unadjusted) p-value pi

We then apply a correction method (next slide) and obtain the
adjusted p-value p∗i
We reject H0i at significance level α if p∗i < α

How? Two possibilities

Single Step Procedures
Take M unadjusted p-values and adjust them independently

Step-Wise Procedures
Adjust p-values sequentially (ex: from the smallest to the largest)
More powerful
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Common adjustment methods

For controlling FWER< α: Bonferroni correction (remember the intuition!)
single-step procedure
p∗i = min(M × pi, 1)

For controlling FDR< α: Benjamini & Hochberg correction
step-wise procedure, independence assumption
how to adjust?

1 first order observed pi’s such that p(1) ≤ p(2) ≤ . . . ≤ p(M)

2 p∗
i = mink=i,...,M

(
min(M

k × p(k), 1)
)
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values:
0.001, 0.021, 0.34, 0.88, 0.011

rank(k) pi FWER (Bonferroni) p∗i FDR (Benj.-Hochb.) p∗i
1 0.001
2 0.011
3 0.021
4 0.34
5 0.88

* significant at 0.05 level

Bonferroni: p∗
i = min(M × pi, 1)

Benjamini-Hochberg: p∗
i = mink=i,...,M

(
min(M

k × p(k), 1)
)
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Example: Adjusting p-values

Suppose you have tested 5 genes and got these p-values:
0.001, 0.021, 0.34, 0.88, 0.011

rank(k) pi FWER (Bonferroni) p∗i FDR (Benj.-Hochb.) p∗i
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4 0.34 1 0.425
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Correction for multiple testing Multiple testing correction procedures: FWER vs. FDR

Take-home messages

Screening genes (for ex. differentially expressed ones) is a statistical
testing problem: we simultaneously test thousands of null hypotheses

Unspecific gene filtering can reduce the number of tests
Multiple testing procedures control for the different kinds of type I
error rates such as FWER and FDR

“For outcome-related gene finding, the most common and serious
flaw was an inadequate, unclear, or unstated method for control-
ling the number of false-positive differentially expressed genes.”
(Dupuy and Simon, 2007)1

1Dupuy A., & Simon R. (2007). Critical Review of Published Microarray Studies for
Cancer Outcome and Guidelines on Statistical Analysis and Reporting, J Natl Cancer
Inst, 99, 147–157.
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