Module 2

Part 1 - Probability and Diagnostic Tests

- R Lab 1 COVID-19 Tests
- Part 2 Probability Distributions
- R Lab 2 Simulations

Alvaro Köhn-Luque Oslo Centre for Biostatistics and Epidemiology (OCBE), UiO and OUS <u>a.k.luque@medisin.uio.no</u>

> MF9130E - Introductory Course in Statistics Spring 2023

Week 1	Monday (24-04)	Tuesday (25-04)	Wednesday (26-04)	Thursday (27-04)	Friday (28-04)
Location	DM Lille auditorium	DM Auditorium 13	DM Store auditorium	DM Runde auditor.	DM Store auditorium
08:30-11:45		C and M	А	С	С
		SEM*	SEM*	SEM*	SEM*
12:45-16:00	М	Α	V	V	
	FOR*	FOR*	FOR*	FOR*	

Week 2	Monday <mark>(</mark> 08-05)	Tuesday (09-05)	Wednesday (10-05)	Thursday (11-05)	Friday <mark>(</mark> 12-05)
Location	DM Lille auditorium	Helga Engs hus Aud 3	DM Auditorium 13	DM Auditorium 13	
08:30-10:00	С	J	М	М	
	FOR	FOR	FOR	FOR	
10:15-11:45	С	J	M and C	M and C	
	SEM	FOR	SEM	SEM	
12:45-14:15	V	М	М	М	
	FOR	FOR	FOR	FOR	
14:30-16:00	V and C	M and C	M and C	М	
	SEM	SEM	SEM	SEM	

Торіс
Course introduction; Data and descriptive statistics
Foundations: probability, Bayes law and diagnostic tests,
statistical distributions (normal and binomial distribution)
Statistical inference: hypothesis testing and confidence intervals,
t-tests, tests for contingency tables
Transformations, non-parametric methods
Sample size and statistical power
Study designs: epidemiological designs and concepts, principles
of clinical trials
Regressions: simple and multiple regression, confounding and
interactions, linear and logistic regression
Survival analysis; Course summary

Lecturer	Lectu
M = Manuela Zucknick	FOR =
A = Alvaro Köhn-Luque	forma
V = Valeria Vitelli	SEM :
J = Jo S Stenhjem	FOR*
C = Chi Zhang	classr
	SEM*
	classr

Lectu	re or Lab
FOR =	Lecture (classical
forma	at)
SEM =	= Lab (classical format)
FOR*	= Lecture (flipped
classr	oom setup)
SEM*	= Lab (flipped
classr	oom setup)

Afternoon session (DM Auditorium 13) Tuesday 25, 12:45 - 16:00

- 12:45 13:00 Introduction to probability and diagnostic testing
- 13:00 14:30 Self-study of part 1 with Q&A
- 14:30 15:00 Break
- 15:00 15:15 Introduction to COVID-19 testing
- 15:15 15:45 **Discussion in groups**
- 15:45 16:00 Summary of this session

Morning session (DM Store Auditorium) Wednesday 26, 8:30 - 11:45

- 8:30 9:15 R Lab 1: COVID-19 Tests
- 9:15 9:30 Introduction to probability distributions
- 9:30 9:45 Break
- 9:45 10:45 Self-study of of part 2 with Q&A
- 10:30 10:45 **Break**
- 10:45 11:30 R Lab 2: Simulations
- 11:30 11:45 **Summary** of this session

Course material

</>>Code

On this page you'll find a list of material used in this course.

For the exercises and lab notes we use during the lab sessions, please check the <u>R Lab and</u> <u>Code</u>.

Week 1

Time	Торіс	Lecture notes	Lab	Other
April 24 PM	Course introduction	<u>Slides</u>		
	Descriptive statistics	<u>Slides</u> , K&S chapter 2-4, Aalen chapter 1-2		<u>Paper 1</u> , <u>Paper</u> <u>2</u> , <u>Paper 3</u>
April 25 AM	Introduction to R and Rstudio	<u>Slides</u>	<u>Intro to</u> <u>RStudio, Intro</u> <u>to R</u>	
	Lab session	<u>Slides</u>	<u>Descriptive</u> <u>statistics (EDA I)</u>	
April 25 PM	Probability, diagnosistic tests	<u>Probability</u> , <u>Diagnostic</u> <u>tests</u>		
	Statistical distributions	Distributions		
April 26 AM	Lab session		<u>COVID-19 tests</u> , <u>Simulations</u>	

Key concepts to learn today

Lecture notes: Probability

- Probability and basic probability calculations
- Conditional probability and stochastic independence
- Bayes law and Bayesian statistics

Lecture notes: Diagnostic Tests

- Sensitivity and Specificity
- Calculation of Positive Predictive Value (PPV) and Negative Predictive Value (NPV) using Bayes law

nature reviews genetics

Explore content ~ About the journal ~ Publish with us ~

nature > nature reviews genetics > review articles > article

Review Article | Published: 04 May 2021

Testing at scale during the COVID-19 pandemic

Tim R. Mercer 🖂 & Marc Salit

Nature Reviews Genetics 22, 415–426 (2021) Cite this article

72k Accesses | 147 Citations | 859 Altmetric | Metrics

Topics for COVID-19 Tests Discussion

We will focus on Figure 2 from: T.R. Mercer and M. Salit, <u>Testing</u> <u>at scale during the COVID-19</u> <u>pandemic</u>, Nature Reviews Genetics 22, 415-426 (2021)

Fig. 2: How test sensitivity, specificity and disease prevalence influence the interpretation of test results.

- Identify all the probabilities in this figure.
- How are the number of negative and positive tests computed in each case?
- Based on these probabilities, would you ever recommend population-scale testing?
- Would you instead recommend testing to specific groups? Which ones?

Summary

- **Probability** of an event is the **frequency** that the event occurs in a large number of trials.
- A probability is always a **value between 0 and 1**. There are basic rules to do **probability calculations** (complement, additive and multiplicative rule).
- A conditional probability P(A|B) is the probability of A given that B has occur.
- Events A and B are **independent** if P(A|B) = P(A), then $P(A \cap B) = P(A)P(B)$
- **Bayes law**: P(B|A) = P(A|B)*P(B) / P(A)
- Use conditional probabilities and Bayes law to understand sensitivity, specificity, PPV and NPV.
- Role of **prevalence** in diagnostic tests results.