Table Analysis

Pearson's Chi-squared test
Exact tests (Fisher's exact test)
Larger Tables

Valeria Vitelli Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E – Introductory Course in Statistics 27.04.2023

Example 17.1 in Kirkwood & Sterne

We consider data from an **influenza vaccination trial**. In this case the exposure is vaccination (the row variable), so the table includes row percentages.

Observed numbers

-	Influenza		
	Yes	No	Total
Vaccine	20 (8.3%)	220 (91.7%)	240
Placebo	80 (36.4%)	140 (63.6%)	220
Total	100 (21.7%)	360 (78.3%)	460

We want to assess the strength of the evidence that vaccination affected the probability of getting influenza.

We start by calculating the **expected numbers** under the assumption of no association between vaccination and subsequent contraction of influenza.

Overall 100/460 people got influenza, so the expected numbers getting influenza are:

- $100/460 \times 240 = 52.2$ in the vaccine group, and
- $100/460 \times 220 = 47.8$ in the placebo group.

Further, overall 360/460 people escaped influenza, so the expected numbers **escaping influenza** are:

- $360/460 \times 240 = 187.8$ in the vaccine group, and
- $360/460 \times 220 = 172.2$ in the placebo group.

The test statistic is

$$\chi^{2} = \frac{(20 - 52.2)^{2}}{52.2} + \frac{(80 - 47.8)^{2}}{47.8} + \frac{(220 - 187.8)^{2}}{187.8} + \frac{(140 - 172.2)^{2}}{172.2} = 19.86 + 21.69 + 5.52 + 6.02 = 53.09,$$

and the corresponding P-value is < 0.001. There is strong evidence against the null hypothesis of no effect of the vaccine on the probability of contracting influenza. It is therefore concluded that the vaccine is effective.

Alternative formulation of the Chi-squared test for a 2×2 table

• A quicker formula for calculating the **test statistic** on a 2×2 table is

$$\chi^2 = \frac{n \times (d_1 \cdot h_0 - d_0 \cdot h_1)^2}{d \cdot h \cdot n_1 \cdot n_0}, \quad \text{d.f.} = 1,$$

using the previous notation for a 2×2 table

Example 17.1 in Kirkwood & Sterne

In the example of the **influenza vaccination trial**, the chi-squared is

$$\chi^2 = \frac{460 \cdot (20 \cdot 140 - 80 \cdot 220)^2}{100 \cdot 360 \cdot 240 \cdot 220} = 53.01,$$

which, apart from rounding error, is the same as the value obtained using the formula of observed and expected numbers

(Fisher's) Exact test for 2×2 tables

- When the numbers in the 2 × 2 table are very small, we need an **exact test** to compare two proportions
- This is based on calculating the **exact probabilities** of the observed table and of more extreme tables with the same row and column totals, using the following formula:

Exact probability =
$$\frac{d! \cdot h! \cdot n_1! \cdot n_0!}{n! \cdot d_1! \cdot d_0! \cdot h_1! \cdot h_0!},$$

with the standard notation for a 2×2 table

• Manually computing a p-value is quite time-consuming, but immediate with **R**!

Example: 17.2 in Kirkwood & Sterne

Consider the results from a study to compare two treatment regimes for **controlling bleeding** in haemophiliacs undergoing surgery

	Bleeding		
Treatment regime	Yes	Νο	Total
A (group 1)	$1(d_1)$	$12(h_1)$	13 (<i>n</i> ₁)
B (group 0)	3 (<i>d</i> ₀)	9 (<i>h</i> ₀)	12 (<i>n</i> ₀)
Total	4 (<i>d</i>)	21 (<i>h</i>)	25 (<i>n</i>)

Only one (8%) of the 13 haemophiliacs given treatment regime A suffered bleeding complications, compared to three (25%) of the 12 given regime B

These numbers are too small for the **chi-squared test** to be valid:

- the overall total, 25, is less than 40, and
- the smallest expected value, $4/25 \cdot 12 = 1.9$ (complications with regime B), is less than 5

The exact test should therefore be used

The exact probability of the observed table is

Exact probability =
$$\frac{4! \cdot 21! \cdot 13! \cdot 12!}{25! \cdot 1! \cdot 3! \cdot 12! \cdot 9!}$$

= 0.2261

In addition, we need to calculate the probability that a **more extreme table** (with the same row and column totals as the observed table) could occur by chance under the null hypothesis that there is no difference between the two treatment regimes \rightarrow with **R**: p > 0.05, no evidence to reject

Larger contingency tables

- The **chi-squared test** can also be applied to larger tables, generally called $r \times c$ **tables**, where r denotes the number of rows in the table and c the number of columns
- The test statistic is:

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}, \quad d.f. = (r - 1) \cdot (c - 1), \quad (1)$$

which is chi-squared distributed with $(r-1)\cdot(c-1)$ degrees of freedom under the null hypothesis

• The general rule for calculating an expected number is:

$$E = \frac{\text{column total} \cdot \text{row total}}{\text{overall total}}$$
(2)

Test validity for the case of larger contingency tables

• Rule of thumb:

The approximation of the chi-squared test is valid when:

- ▶ less than 20% of the expected numbers are under 5, and
- none of the expected numbers is less than 1
- Sometimes this restriction **can be overcome by combining rows (or columns)** with low expected numbers, providing that these combinations make biological sense

Example: 17.3 in Kirkwood & Sterne

Consider the results from a survey to compare the **principal water sources** in three villages in West Africa.

The numbers of households using a river, a pond, or a spring are given. We will treat the **water source** as outcome and **village** as exposure, so column precentages are displayed.

		Water source			
Village	River	Pond	Spring	Total	
Α	20 (40.0%)	18 (36.0%)	12 (24.0%)	50 (100.0%)	
В	32 (53.3%)	20 (33.3%)	8 (13.3%)	60 (100.0%)	
С	18 (45.0%)	12 (30.0%)	10 (25.0%)	40 (100.0%)	
Total	70 (46.7%)	50 (33.3%)	30 (20.0%)	150 (100.0%)	

Observed numbers

Overall, 70 of the 150 households use a river. If there were no difference between villages, one would expect this same proportion of river usage in each village. Thus the **expected numbers** of households using a river in villages A, B and C, respectively, are:

$$\frac{70}{150} \cdot 50 = 23.3, \quad \frac{70}{150} \cdot 60 = 28.0 \quad \text{and} \quad \frac{70}{150} \cdot 40 = 18.7.$$

We use the same procedure to calculate the expected numbers of households using a pond and a spring in the villages.

	Water source			
Village	River	Pond	Spring	Total
Α	23.3	16.7	10.0	50
В	28.0	20.0	12.0	60
с	18.7	13.3	8.0	40
Total	70	50	30	150

The observed value of the test statistic is:

$$\chi^{2} = \frac{(20 - 23.3)^{2}}{23.3} + \frac{(18 - 16.7)^{2}}{16.7} + \frac{(12 - 10.0)^{2}}{10.0} + \frac{(32 - 28.0)^{2}}{28.0} + \frac{(18 - 18.7)^{2}}{18.7} + \frac{(20 - 20.0)^{2}}{20.0} + \frac{(8 - 12.0)^{2}}{12.0} + \frac{(12 - 13.3)^{2}}{13.3} + \frac{(10 - 8.0)^{2}}{8.0} = 3.53,$$

with d.f. = $(r-1) \cdot (c-1) = 2 \cdot 2 = 4$ degrees of freedom.

The corresponding *P***-value** is 0.47. This means that there is no evidence of a difference between the villages in the proportion of households using different water sources.

Final Remarks

McNemars test

- A special case of the 2x2 table for paired categorical data
- For example when measuring the presence/absence of something at two time points for each individual

Chi squared versus Fisher's exact test

- If the exact test works for both small and large samples, it is natural to ask if we shall always use the exact test
- Answer: NO! Why?
 - The two tests have different assumptions
 - The exact test can be (very) conservative; giving to high p-values and low power

Read more in e.g. Lydersen, Fagerland, Laake, *Recommended tests for association in 2x2 tables*, Statistics in Medicine, 2009: Fisher's exact should never be used without the mid-P correction