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Outline

Aalen chapter 11.1-11.3, Kirkwood and Sterne chapter 10
I Learn how to model a relationship between two variables:

correlation & (simple) linear regression
I Assumptions to be checked when using linear regression

analysis
I Example R code
I (Appendix: some theory behind regression)
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Outline for this afternoon

12.45-14.15: Regression analysis I: Simple regression, correlation.
Literature: Aalen chap. 11.1-11.3, K&S chap. 10

14.30-15.15: R exercise for regression I.
15.15-16.00: Discussion of the R exercise for regression I in class.
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What is regression about?

I Measuring several quantities.
I Aim: detecting the association between them.
I Regression is a statistical method for analysing association.
I It is closely related to correlation.

Correlation: How close are the points to a straight line?
I Correlation is always between -1 and +1.
I Correlation +1 means that the points lie on a straight line

with positive slope (-1 correlation means negative slope).
I Correlation 0 means no association.
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Underlying example: FEV1 and height
I We want to examine the association between two continuous

variables,
I and we use a toy example: lung function (FEV1) and height

for 20 male medical students.
height fev1

174 4.32
180.7 4.8
183.7 4.68
177 5.43
177 3.09
172 3.78
176 3.75
177 4.05
164 3.54
178 2.98
167 3.54

171.2 3.42
177.44 3.6
171.3 3.2
183.6 4.56
183.1 4.78
172 3.6
181 3.96

170.4 3.19
171.2 2.85
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Pearson’s coefficient of correlation: r
I This is a measure of linear trend associated with two variables

X and Y ,
I −1 ≤ r ≤ 1,
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Definition of r

I Variables X and Y ,
I Outcomes x1, x2, . . . , xN and y1, y2, . . . , yN ,

r =
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2∑N

i=1(yi − y)2
(1)
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Scatter plots: examples of r

I Scatter plots are useful to explore your data,
I R: plot().
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Correlations in R

I R: cor().
I Note that the result will be NA (missing value), if there are

any missing values in the data.
In this case, use option use = "complete.obs".
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Testing for a correlation

Aim
We are often interested in testing whether a sample correlation r is
large enough to indicate a nonzero population correlation.

This corresponds to testing the following hypothesis:
H0: the true correlation equals 0,
H1: the true correlation is different from 0.

I Test statistic: r
√

n−2√
1−r2 ∼ tn−2

I Assumption: variables have to be normal, correlation has to
be linear. Always check the scatterplot!
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Testing for a correlation in R

I Use function cor.test() for a statistical test of the null
hypothesis that the correlation is zero.

I Also provides a confidence interval.
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Pairwise correlation of many variables

R will calculate a matrix of all pair-wise correlations if we provide
the data in form of a matrix or dataframe.

Take for instance the data set with PEF measurements:
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A few warnings: confounders
I A large r can in some situations be due to a third variable

(confounder), and does not necessarily represent a causal
relation.

I Example: in the figure, correlation between human birth rate
and number of storks
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Non-linear trends

I A small r does not imply that there is no trend, only that
there is no linear trend,

I r is therefore not suitable in the following situation:

14 / 37



Clustered scatter plots
I The correlation coefficient is not suitable if the scatter plot

consists of separate clusters,

I 1983-2005: r = 0.65
I 1983-1992: r = 0.16
I 1993-2005: r = 0.07
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Outliers
I Some observations can have too big impact on the correlation,

I It can be a good idea to remove such outliers (e.g. for testing
sensitivity of the regression results to individual data points).
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FEV1 vs. height: Linear regression

I The correlation r = 0.58 and the scatter plot indicate that
there is a relation between FEV1 and height,

I We can quantify this relation with a linear regression analysis.
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A line that represents the relation among FEV1 and height

I General formula for a straight line:

y = a + bx

I x and y are the coordinates of any point on the line;
I a and b are the line parameters:

I a is where the line crosses the y-axis (intercept),
I b is the slope of the line, i.e., its inclination with respect to

the x-axis;
I a and b are the only two parameters that we need to estimate

in order to completely define the regression line.
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How do we find a and b?

I There are no straight lines that go through all the
measurements,

I The vertical distances from the measurements and the line are
called residuals, and named: e1, e2, e3.

I We will choose a and b such that the line minimizes the sum
of squared residuals:

e2
1 + e2

2 + e2
3.
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Method of least squares

General method:
I Compute each residual with respect to the line y = a + bx,
I Compute the sum of squares of these numbers,
I Choose a and b that give the smallest sum of squares.

I See the appendix for some technical details.
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Example: FEV1 vs. height
I In our toy example we are interested in how FEV1 changes

with height
I In R, we use the command lm() (for “linear model”) for all

linear regression models.
I Note the formula notation for regressing y on x: y ˜ x

I Estimated regression line:

FEV1 ≈ −9.18 + 0.07 · height
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Example: FEV1 vs. height
I As with many other analyses in R, we can use generic

methods like summary() and plot() for more results:
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Example: FEV1 vs. height

I â = −9.184, b̂ = 0.074
I SE(â) = 4.307, SE(b̂) = 0.025,

I t = 3.029 gives p = 0.007, so H0 : b = 0 is rejected at the 5%
level.
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Example: FEV1 vs. height

I Use confint() to calculate confidence intervals for the
regression coefficients:

I 95% confidence interval for b: (0.023, 0.126)
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Explained variance r2 (also called R2)

I We have that 0 ≤ r2 ≤ 1,
I and (as obvious from notation) r2 is the square of the linear

correlation r.
I If r2 is large, it means that the observations are close to the

regression line,
I If r2 is small, it means that the observations are not so close

to the regression line,
I Interpretation: r2 quantifies the proportion of variation in the

data that is explained by the fitted linear regression model.

I Recall that r2 = 0.338 in the FEV1-example,
I so in words we can say that there is 34% explained variation

in this example.
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Residuals
I The deviations of the observed outcomes from the regression

line are called residuals,
I Residuals are computed as

e1 = y1 − (â + b̂x1)
e2 = y2 − (â + b̂x2)

...
en = yn − (â + b̂xn)

I A standardized residual is the residual divided by the empirical
standard deviation:

ei√
1

n−1
∑n

j=1 e2
j
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Fitted values

We can use the model to compute the individual predictions based
on their height, i.e.

0.074 · height− 9.184.

I This equation can be used to predict values for y (FEV1) for a
certain value of x (height), e.g.

I for someone with a height of 1.80m:

0.074 · 180− 9.184 = 4.136.
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Conditions for linear regression

The residuals shall be
I Approximately independent.
I Not be systematically related to any independent variable or

’fitted value’.
I Their variance should be approximately constant (and not

depend on the size of the fitted values).

I Be normally distributed around 0 (only needed for inference),
I ... and in this case, most standardized residuals lie between

approx. -2 and +2.
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Using R to check the conditions for linear regression

I Normality plots for residuals, e.g. Normal Q-Q plots
(top-right plot on next slide)

I Plot of (standardized) residuals versus fitted values
(top-left and bottom-left plots on next slide)

I Plot of residuals versus covariates
(slide after next)

I Examine large residuals and potential influence points with
respect to their leverage
(see tomorrow)
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Example: FEV1 vs. height
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Plot of residuals versus covariates

I This and the plots of residuals vs fitted values all indicate that
the residuals are not systematically related to the fitted
values/ covariates and are homoscedastic.
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Summary

Key words
I Correlation
I Linear regression
I Residuals, conditions for linear regression

Notation
I r, r2/ R2

I a, b; (Sx, Sy)
I e1, . . . , en
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Appendix: Some technical details
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Minimizing the sum of squares

Line with best fit is found by minimizing:

(y1 − (a + bx1))2 + · · ·+ (yn − (a + bxn))2

Some calculus shows that y = â + b̂x yields the best fitting line if

b̂ =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

â =y − b̂x.
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The estimated regression line is related to correlation!

Note that
b̂ =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 =
Sy

Sx
· r,

where
r =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2∑N
i=1(yi − y)2

and

Sx =

√∑n
i=1(xi − x)2

n− 1 and Sy =

√∑n
i=1(yi − y)2

n− 1 .

→ Sx and Sy are empirical standard deviations of the variables x
and y, respectively
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95%-confidence interval for b

I Standard error of the regression coefficient estimator b̂:

SE(b̂) :=
1

n−2
∑n

i=1(yi − (â + b̂xi))2√∑n
i=1(xi − x)2 (2)

I 95%-confidence interval for b:(
b̂− c · SE(b̂), b̂ + c · SE(b̂)

)
,

where c is the 2.5% percentage point in the Student-t
distribution with n− 2 degrees of freedom.
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Testing the hypothesis H0 : b = 0 vs. HA : b 6= 0

I Test statistic:
T = b̂

SE(b̂)
(3)

I Under H0 (i.e., if H0 is true), T is distributed as a t-Student
with n− 2 degrees of freedom

I This means that, given an observed test statistic T0, the
p-value equals

p = 2P (tn−2 ≥ |T0|). (4)
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