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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12
I Multiple linear regression (briefly: multiple regression)

I More on linear regression models: confounding, interactions,
categorical covariates with more than 2 levels, regression
assumptions, leverage effect.

I To explain, to predict or to describe?: How the purpose of the
analysis decides what is important.
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Outline for today
08.30-10.00: Regression analysis II: multiple regression, confounding,

interaction effects.

10.15-11.15: R exercise for regression II.
11.15-11.45: Discussion of the R exercise for regression II in class.

I LUNCH

12.45-13.45: Regression analysis III: Multiple regression (continued),
categorical variables, assumptions, leverage effect.

14.00-14.45: R exercise for regression III.
14.45-15.15: Discussion of the R exercises for regression III in class.

15.15-16.00: To explain, to predict or to describe?: How the purpose of the
analysis decides what is important.
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Yesterday: Simple linear regression

A simple linear regression describes the relationship between 1
independent variable (covariate, or predictor) and the dependent
variable (response variable, or outcome) via a line.
Toy example: association between FEV1 and height.
Estimated regression line:

FEV1 ≈ −9.19 + 0.07 · height (1)
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Relationship between simple linear regression and t-test
I There is a connection between the two approaches:
I Student’s t-test (with equal variances) for the difference in the

population mean between two independent groups is
equivalent to a simple linear regression with the grouping as
predictor variable.

Let us see this in a toy example:
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R output for the t-test

R output for the Student’s t-test (with equal variances) for the
difference in energy between the lean and obese:
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R output for the simple linear regression
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Multiple regression

I Is an extension of the simple linear regression with one
independent variable (predictor / covariate),

I Still a continuous response (dependent) variable, but several
explanatory (independent) variables (multiple predictors /
covariates),

I The independent variables can be continuous, dichotomous or
have more than two categories,

I The multiple linear regression model is defined as

Y = b0 + b1x1 + · · ·+ bpxp.

8 / 56



Regression coefficients

Y = b0 + b1x1 + · · ·+ bnxn.

I b1, . . . , bn are called regression coefficients,
I bi can be interpreted as the effect of one unit increase of the

variable xi when the other variables remain unchanged,
I also called adjusted effect,
I Not necessarily a causal effect.
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Interpretation

I Geometrically this corresponds to
viewing data as points in a
high-dimensional space.

I Beyond three dimensions we cannot
picture such a space, but
mathematically there is no difficulty
with high-dimensional spaces.

Regression with two
independent variables:
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Multiple regression via a toy example

Example: data on systolic blood pressure

Description Name
Id Id
Systolic blood pressure SBP
Quetelet index (BMI) QUET
Age AGE
Smoking status SMK
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Simple linear regression: SBP vs AGE

I Note that b̂0 = 59.09 and b̂1 = 1.61,
I Confidence interval for b1 (1.12, 2.09) (calculate in R with

confint())
I H0 : b1 = 0 is rejected, as p < 0.001.
I SBP increases 1.6 units for each year.
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Simple linear regression: SBP vs Age

15 / 56



Simple linear regression: SBP vs QUET

I Note that b̂0 = 70.58 and b̂1 = 21.49,
I Confidence interval for b1 (14.25, 28.73) (calculate in R with

confint())
I H0 : b1 = 0 is rejected, as p < 0.001.
I SBP increases 21.49 units for each unit of QUET.
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Simple linear regression: SBP vs QUET
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Multiple regression: Combining AGE and QUET

I QUET does not have a significant effect on SBP, when
adjusting for AGE,

I When AGE increases, then SBP will increase with 1.045 units,
I This is a significant increase (p = 0.01), confidence interval

(0.26, 1.84) (calculate in R with confint()).
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Confounding

What did we learn from the two previous models?
I Adjustment for AGE leads to a weaker relationship between

SBP and QUET.
I AGE is associated with both SBP and QUET, and affects the

association between them.

This implies that AGE is a confounding variable.
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Confounders (more on this topic tomorrow)
Definition
A confounder is a variable that is a common cause of the
exposure and the response (disease), and NOT an effect of the
exposure or the disease.
I Confounding variables are important when we want to

estimate (causal) effects from various exposures.
I As they cause both the exposure and the response, they are

likely to cause biases.
I They can be dealt with by adjusting in a multiple

regression model: always adjust for potential confounders by
including them in the regression model!

I Multivariate regression models are thus important to include
potential relevant variables.

I Be careful not to include common effects (also called
colliders).
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Simple linear regression: SBP vs SMK

I Note that b̂0 = 140.80 and b̂1 = 7.02,
I Confidence interval for b1 (−3.24, 17.28) (calculate in R with

confint())
I H0 : b1 = 0 is not rejected, as p = 0.17,
I Average difference between the two groups is 7.02.
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Simple linear regression: SBP vs SMK
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Multiple regression: Combining AGE, QUET and SMK

I Both AGE and SMK have significant effects,
I When AGE increases 1 unit, SBP increases with 1.2 units,
I Confidence interval: (0.55, 1.88), p = 0.001,
I Smokers have 10 units higher SBP than non-smokers,

confidence interval (4.5, 15.4), p = 0.001.
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Removing QUET from the model

I Both AGE and SMK still have significant effects.
I Removing QUET lead to a slight decrease in the R2: we

might consider keeping it.

24 / 56



Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 · AGE + 10.29 · SMK

I One year increase in age yields an increase of SBP 1.71 units,
I Non-smokers model: SBP = 48.05 + 1.71 · AGE
I Smokers model: SBP = 58.34 + 1.71 · AGE

I The effect on SBP of the increase in AGE is the same
regardless if one is a smoker or not. Is this realistic?

I NO → In reality, the effect of age could be larger for smokers.
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Interaction between two explanatory variables

I If the effect of one variable might depend on another variable,
I we have to build a common model for main effects as well as

interactions:

SBP = b0 + b1 · AGE + b2 · SMK + b3 · AGE · SMK

I This is easily done in R with either the “*” or “:” operators:

lm(SBP ˜ AGE*SMK, data=bloodpressure)

or
lm(SBP ˜ AGE + SMK + AGE:SMK, data=bloodpressure)
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Interaction between two explanatory variables

I Note that the interaction term is not significant, so we may
drop this from the model if there are no particular
biological/clinical reasons for keeping it,
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Interpretation
For the non-smokers (SMK =0):

SBP =b̂0 + b̂1 · AGE + b̂2 · 0 + b̂3 · AGE · 0
=58.57 + 1.52 · AGE

For the smokers (SMK = 1):
SBP =b̂0 + b̂1 · AGE + b̂2 · 1 + b̂3 · AGE · 1

=45.72 + 1.96 · AGE
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Other possible interactions
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Other possible interactions

30 / 56



Model selection

I None of these interactions had significant effects, so in the
light of a parsimony criterion (so to save degrees of freedom)
we will skip the interactions in the final model.

I Automatic model selection is possible, but hard to use in
practice.

I Models motivated by causal interpretations should be based
on subject matter knowledge, not just an algorithm.
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Final multiple regression model
No significant interactions, so we end up with the following model:

SBP = b0 + b1 · AGE + b2 · QUET + b3 · SMK
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Interaction

I Interaction means that the effect of a variable depends on a
second variable,

I Not the same a confounding variable,
I Multivariate regression enables us to analyze interaction

effects,
I We often need large data sets to get significant interaction

effects.

I A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Assumptions: residuals

e1 = y1 − β̂0 − β̂1 · x11 − · · · − β̂p · xp1
...

en = yn − β̂0 − β̂1 · x1n − · · · − β̂p · xpn

I Divide by empirical standard deviation to get standardized
residuals,

I Standardized residuals should:
I Be independent,
I Be normally distributed around 0, regardless of the size of the

fitted value.
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Check assumptions with R

I Normality plot for residuals (Normal Q-Q plot):
top-right plot on next slide

I Residual plot: Plot residuals against fitted values:
top-left and bottom-left plots on next slide
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Model diagnostics plots in R
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Explanatory variables with more than two categories

We will go back to the birth weight data set (birth.dta).

Response variables:
BWT Birth weight

Explanatory variables:
AGE Age
LWT Mothers weight
SMK Smoking status
ETH Ethnicity, 1 = White, 2 = Black, 3 = Other
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Categorical variables with more than two levels

I Are formally included in the analysis with dummy variables,
I In some softwares (e.g. SPSS) one has to manually construct

two dummy-variables to include ethnicity.
I In R this is done automatically provided we make sure that

the categorical variable is included as a factor variable.
I Character variables are automatically translated into factor,

but not numeric variables.
I With this, R will internally create two new dummy variables

under the hood:

ETH Eth(1) Eth(2)
White 0 0
Black 1 0
Other 0 1
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Simple regression including a categorical predictor (with
more than 2 levels)
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Simple regression including a categorical predictor (with
more than 2 levels)

40 / 56



Multiple regression with all available predictors:
AGE, LWT, SMK and ETH
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Testing if the multi-level categorical variable is significant

Once we have fitted a regression model including a multi-level
categorical variable, we might want to test if there is a significant
overall effect of that variable.

We do not get this from the regression output, but we can use the
anova command to perform a so-called likelihood-ratio test, which
compares the model with ETH to the model without ETH.

Remember that ’ETH’ is encoded with 2 ’dummy variables’: R
then tests the null-hypothesis that the regression coefficient for
both dummy variables are equal to 0.
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R output

Note that the p-value is 0.0003, so the variable is significant.
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Robustness: leverage and influence of observations

I Sometimes a single individual can have a huge influence on
the estimates in a regression model,

I This is something we want to avoid as it makes the conclusion
more arbitrary,

I A single individual will typically have more influence on the
final estimate if it is very untypical in terms of covariates, and
also has a relatively large residual value,

I How different an individual is from the average, in terms of
covariates, is quantified by the ’leverage’,

I It is common to assess the influence by plotting the squared
residual against the leverage for every individual,

I We can use the fourth plot of the model diagnostics plots that
are generated by running plot(fit).
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Standardized residuals vs leverage

I Potential influence points are indicated by their ID.
I We can use Cook’s distance > 1 as an indication for a

potential influence point (not the case here).
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Summary

Key words
I Multiple linear regression
I Confounder / collider (more tomorrow)
I Interaction effects
I Categorical covariates with more than 2 levels
I Regression assumptions / leverage effect
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Description: Sailer et al. (2023). Caressed by music: Related
preferences for velocity of touch and tempo of music?

I Describe relationships between variables x and y.
I We are mainly interested in: the fitted regression curve
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Explanation: Kristiansen et al. (2021). Mediators Linking
Maternal Weight to Birthweight and Neonatal Fat Mass in Healthy
Pregnancies

I Explain/ understand the nature of a relationships between
variables x and y.

I We are mainly interested in: coefficients â, b̂ and their p-values
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Prediction: Maros et al. (2020). Machine learning workflows to
estimate class probabilities for precision cancer diagnostics on DNA
methylation microarray data

I Predict y from other data x
I We are mainly interested in: fitted/ predicted values ŷ
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Summary: To explain, to predict or to describe
I Description: Scatterplots with the fitted regression curves.

I Explanation: Tables of the estimated regression coefficients
with their confidence intervals (or standard errors) and
p-values

Crucial that the model contains the right set of covariates
(confounders, not colliders - see tomorrow) and that no strong
multi-collinearity exists, normality of the residuals

I Prediction: Prediction performance on a new never seen test
data set, e.g. test RSS (sum of squares of residuals) or test R2

We do not care about the regression coefficients, therefore
inclusion of confounders, avoidance of multi-collinearity etc.
not so important.

For more details see the abridged Shmueli (2019) presentation
provided to the class.
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