Regression analysis II & III: Multiple regression, confounding, interactions, categorical variables, assumptions, leverage

Regression analysis IV: To explain, to predict or to describe

Manuela Zucknick

Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO manuela.zucknick@medisin.uio.no

MF9130E – Introductory Course in Statistics, 10-05-2023

Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11 and 12

- **Multiple linear regression** (briefly: multiple regression)
- I More on linear regression models: **confounding**, **interactions**, **categorical covariates** with more than 2 levels, regression **assumptions**, **leverage** effect.
- \triangleright To explain, to predict or to describe?: How the purpose of the analysis decides what is important.

Outline for today

08.30-10.00: Regression analysis II: multiple regression, confounding, interaction effects.

- 10.15-11.15: R exercise for regression II.
- 11.15-11.45: Discussion of the R exercise for regression II in class.

\blacktriangleright LUNCH

- 12.45-13.45: Regression analysis III: Multiple regression (continued), categorical variables, assumptions, leverage effect.
- 14.00-14.45: R exercise for regression III.
- 14.45-15.15: Discussion of the R exercises for regression III in class.
- 15.15-16.00: To explain, to predict or to describe?: How the purpose of the analysis decides what is important.

Yesterday: Simple linear regression

A **simple linear regression** describes the relationship between 1 independent variable (covariate, or predictor) and the dependent variable (response variable, or outcome) via a line.

Toy example: association between FEV1 and height. Estimated regression line:

$$
\text{FEV1} \approx -9.19 + 0.07 \cdot \text{height} \tag{1}
$$

Relationship between simple linear regression and t-test

- \blacktriangleright There is a connection between the two approaches:
- \triangleright Student's t-test (with equal variances) for the difference in the population mean between two independent groups is **equivalent** to a simple linear regression with the grouping as predictor variable.

Let us see this in a toy example:

Table 9.4 24 hour total energy expenditure (MJ/day) in groups of lean and obese women (Prentice et al., 1986)

R output for the t-test

R output for the Student's t-test (with equal variances) for the difference in energy between the lean and obese:

```
> t.test(energy ~ group, data=energy, var.equal=TRUE)
        Two Sample t-test
data: energy by group
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means between group Lean and group Obese is not equal to 0
95 percent confidence interval:
 -3.411451 - 1.051796sample estimates:
 mean in group Lean mean in group Obese
           8.066154
                              10.297778
```
R output for the simple linear regression

```
> fit < -1m(energy < arow, data=energy)> summarv(fit)Gal:lm(formula = energy ~ group, data = energy)Residuals:
   Min
            10 Median
                            30
                                   Max
-1.9362 - 0.6153 - 0.4070 0.2614 2.8138
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.0662  0.3618  22.297 1.34e-15 ***
groupObese
             2.2316   0.5656   3.946   0.000799 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 1.304 on 20 degrees of freedom
Multiple R-squared: 0.4377, Adjusted R-squared: 0.4096
F-statistic: 15.57 on 1 and 20 DF, p-value: 0.000799
```
Multiple regression

- \blacktriangleright Is an extension of the simple linear regression with one independent variable (predictor / covariate),
- \triangleright Still a continuous response (dependent) variable, but several explanatory (independent) variables (multiple predictors / covariates),
- \blacktriangleright The independent variables can be continuous, dichotomous or have more than two categories,
- **If** The multiple linear regression model is defined as

$$
Y = b_0 + b_1x_1 + \cdots + b_px_p.
$$

Regression coefficients

$$
Y = b_0 + b_1 x_1 + \cdots + b_n x_n.
$$

- \blacktriangleright b_1, \ldots, b_n are called regression coefficients,
- \blacktriangleright b_i can be interpreted as the effect of one unit increase of the variable *xⁱ* when the other variables remain unchanged,
- \blacktriangleright also called **adjusted effect**,
- \blacktriangleright Not necessarily a causal effect.
- \blacktriangleright Geometrically this corresponds to viewing data as points in a high-dimensional space.
- \blacktriangleright Beyond three dimensions we cannot picture such a space, but mathematically there is no difficulty with high-dimensional spaces.

Regression with two independent variables:

Multiple regression via a toy example

Example: data on **systolic blood pressure**

Simple linear regression: SBP vs AGE

```
fit \leftarrow \text{lm(SBP} \sim \text{AGE}, \text{ data=bloodpressure}> summarv(fit)
Gal:lm(formula = SBP ~ AGE, data = bloodpressure)Residuals:
    Min
             10 Median
-15.548 - 6.990 - 2.481 5.765 23.892
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.0916
                        12.8163 4.611 6.98e-05
AGF
              1.6045
                          0.2387 6.721 1.89e-07
                0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
Signif, codes:
Residual standard error: 9.245 on 30 dearees of freedom
Multiple R-squared: 0.6009, Adjusted R-squared: 0.5876
F-statistic: 45.18 on 1 and 30 DF, p-value: 1.894e-07
```
- ▶ Note that $\hat{b}_0 = 59.09$ and $\hat{b}_1 = 1.61$,
- \triangleright Confidence interval for b_1 (1.12, 2.09) (calculate in R with confint())
- $H_0: b_1 = 0$ is rejected, as $p < 0.001$.
- ▶ SBP increases 1.6 units for **each year**.

Simple linear regression: SBP vs Age

> plot(SBP ~ AGE, data=bloodpressure) > abline(reg=fit, col="red")

Simple linear regression: SBP vs QUET

```
fit \leftarrow lm(SBP \sim OUET, data=bloodpressure)
> summarv(fit)C<sub>0</sub>11:
lm(formula = SBP ~ 0UET, data = bloodpressure)Residuals:
    Min
            10 Median 30
-19.231 -7.145 -1.604 7.798 22.531
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.576
                        12.322 5.728 2.99e-06
                     3.545 6.062 1.17e-06
OUET
              21.492
Signif, codes:
                0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.812 on 30 degrees of freedom
Multiple R-squared: 0.5506, Adjusted R-squared: 0.5356
F-statistic: 36.75 on 1 and 30 DF, p-value: 1.172e-06
```
- **I** Note that $\hat{b}_0 = 70.58$ and $\hat{b}_1 = 21.49$.
- \triangleright Confidence interval for b_1 (14.25, 28.73) (calculate in R with confint())
- $H_0 : b_1 = 0$ is rejected, as $p < 0.001$.
- ▶ SBP increases 21.49 units for **each unit of QUET**.

Simple linear regression: SBP vs QUET

> plot(SBP ~ QUET, data=bloodpressure) > abline(reg=fit, col="red")

Multiple regression: Combining AGE and QUET

```
fit \leftarrow lm(SBP \sim OUET + AGE, data=bloodpressure)
> summarv(fit)C<sub>0</sub>11.
lm(formula = SBP ~ 0UET + AGE, data = bloodpressure)Residuals:
            10 Median 30
    Min
                                   Max
-11.667 -6.793 -2.732 5.318 19.600
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.3234 12.5347 4.414 0.000129 ***
OUET
            9.7507 5.4025 1.805 0.081489
            1.0452
                        0.3861 2.707 0.011253 *
AGE
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.916 on 29 dearees of freedom
Multiple R-squared: 0.6412, Adjusted R-squared: 0.6165
F-statistic: 25.92 on 2 and 29 DF, p-value: 3.505e-07
```
- \triangleright QUET does not have a significant effect on SBP, when adjusting for AGE,
- ▶ When AGE increases, then SBP will increase with 1.045 units,
- \blacktriangleright This is a significant increase $(p = 0.01)$, confidence interval (0*.*26*,* 1*.*84) (calculate in R with confint()).

Confounding

What did we learn from the two previous models?

- \triangleright Adjustment for AGE leads to a weaker relationship between SBP and QUET.
- \triangleright AGE is associated with both SBP and QUET, and affects the association between them.

This implies that AGE is a **confounding variable.**

Confounders (more on this topic tomorrow)

Definition

A **confounder** is a variable that is a **common cause** of the exposure and the response (disease), and **NOT an effect** of the exposure or the disease.

- \triangleright Confounding variables are important when we want to estimate (causal) effects from various exposures.
- \triangleright As they cause both the exposure and the response, they are likely to cause biases.
- I They can be dealt with by **adjusting in a multiple regression model**: always adjust for potential confounders by including them in the regression model!
- \triangleright Multivariate regression models are thus important to include potential relevant variables.
- \triangleright Be careful not to include common effects (also called colliders).

Simple linear regression: SBP vs SMK

```
fit \leftarrow \text{lm(SBP} \sim \text{SMK}, data = \text{bloodpressure})Gal:lm(formula = SBP ~ SMK. data = bloodpressure)Residuals:
             10 Median
   Min
-21.824 -9.056 -2.812 11.200 32.176
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 140.800
                          3.661 38.454
                                           <2e-16
SMK
               7.024
                          5.023 1.398
                                            0.172
                0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
Sianif, codes:
Residual standard error: 14.18 on 30 dearees of freedom
Multiple R-squared: 0.06117, Adjusted R-squared: 0.02988
F-statistic: 1.955 on 1 and 30 DF, p-value: 0.1723
```
- ▶ Note that $\hat{b}_0 = 140.80$ and $\hat{b}_1 = 7.02$.
- I Confidence interval for *b*¹ (−3*.*24*,* 17*.*28) (calculate in R with confint())
- $H_0: b_1 = 0$ is not rejected, as $p = 0.17$,
- ▶ Average difference between the two groups is 7.02.

Simple linear regression: SBP vs SMK

> plot(SBP ~ SMK, data=bloodpressure) > abline(reg=fit, col="red")

Multiple regression: Combining AGE, QUET and SMK

```
<- lm(SBP ~ QUET + AGE + SMK, data=bloodpressure)
Call:lm(formula = SBP ~ OUET + AGE + SMK. data = bloodpressure)
Residuals:
    Min
            10 Median
                             30Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1032
                      10.7649 4.190 0.000252 ***
OUET
           8.5924 4.4987 1.910 0.066427.
AGF
         1.2127   0.3238   3.745   0.000829
SMK
           9.9456 2.6561 3.744 0.000830
Sianif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-sauared: 0.7609. Adjusted R-sauared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
```
- \triangleright Both AGE and SMK have significant effects,
- ▶ When AGE increases 1 unit, SBP increases with 1.2 units,
- \triangleright Confidence interval: $(0.55, 1.88), p = 0.001,$
- \triangleright Smokers have 10 units higher SBP than non-smokers, confidence interval (4*.*5*,* 15*.*4), *p* = 0*.*001.

Removing QUET from the model

```
> fit <- lm(SBP ~ AGE + SMK, data=bloodpressure)
> summarv(fit)Call:lm(formula = SBP ~ AGE + SMK, data = bloodpressure)Residuals:
   Min
            10 Median
                            30
                                   Max
-10.639 -5.518 -1.6374.900 19.616
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.0496
                       11.1296 4.317 0.000168
AGE
            1.7092
                       0.2018 8.471 2.47e-09
SMK
            10.2944
                        2.7681 3.719 0.000853 ***
                 (***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif codes:
Residual standard error: 7.738 on 29 degrees of freedom
Multiple R-sauared: 0.7298.
                            Adjusted R-sauared: 0.7112
F-statistic: 39.16 on 2 and 29 DF, p-value: 5.746e-09
```
- \triangleright Both AGE and SMK still have significant effects.
- **•** Removing QUET lead to a slight decrease in the R^2 : we might consider keeping it.

Closer look at the effect of AGE and SMK

 $SBP = 48.05 + 1.71 \cdot \text{AGE} + 10.29 \cdot \text{SMK}$

- \triangleright One year increase in age yields an increase of SBP 1.71 units,
- \triangleright Non-smokers model: SBP = $48.05 + 1.71 \cdot \text{AGE}$
- \triangleright Smokers model: SBP = $58.34 + 1.71 \cdot \text{AGE}$

 \triangleright The effect on SBP of the increase in AGE is the same regardless if one is a smoker or not. Is this realistic? \triangleright NO \rightarrow In reality, the effect of age could be larger for smokers. Closer look at the effect of AGE and SMK

 $SBP = 48.05 + 1.71 \cdot \text{AGE} + 10.29 \cdot \text{SMK}$

- \triangleright One year increase in age yields an increase of SBP 1.71 units,
- \triangleright Non-smokers model: SBP = $48.05 + 1.71 \cdot \text{AGE}$
- \triangleright Smokers model: SBP = $58.34 + 1.71 \cdot \text{AGE}$

- \blacktriangleright The effect on SBP of the increase in AGE is the same regardless if one is a smoker or not. Is this realistic?
- \triangleright NO \rightarrow In reality, the effect of age could be larger for smokers.

Interaction between two explanatory variables

- If the effect of one variable might depend on another variable,
- \triangleright we have to build a common model for main effects as well as interactions:

$$
SBP = b_0 + b_1 \cdot \text{AGE} + b_2 \cdot \text{SMK} + b_3 \cdot \text{AGE} \cdot \text{SMK}
$$

 \blacktriangleright This is easily done in R with either the "*" or ":" operators:

lm(SBP ˜ AGE*SMK, data=bloodpressure) or lm(SBP ˜ AGE + SMK + AGE:SMK, data=bloodpressure)

Interaction between two explanatory variables

```
fit \leftarrow lm(SBP ~ AGE*SMK, data=bloodpressure)
> summary(fit)Gal:lm(formula = SBP ~ AGE * SMK, data = bloodpressure)Residuals:
    Min
            10 Median
                            30
                                   Max
-11.036 -4.961 -1.958 5.552 20.665
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.5743
                       14.8048 3.956 0.000472 ***
            1.5152   0.2703   5.605   5.32e-06 ***
AGE
SMK
           -12.846021.7153 -0.592 0.558888
                        0.4048 1.074 0.291840
AGE: SMK
             0.4349
Sianif, codes:
               0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1
Residual standard error: 7.717 on 28 dearees of freedom
Multiple R-squared: 0.7405, Adjusted R-squared: 0.7127
F-statistic: 26.63 on 3 and 28 DF, p-value: 2.369e-08
```
 \triangleright Note that the interaction term is not significant, so we may drop this from the model if there are no particular biological/clinical reasons for keeping it,

Interpretation

For the non-smokers $(SMK = 0)$:

$$
\begin{aligned} \mathsf{SBP} = & \hat{b}_0 + \hat{b}_1 \cdot \mathsf{AGE} + \hat{b}_2 \cdot 0 + \hat{b}_3 \cdot \mathsf{AGE} \cdot 0 \\ = & 58.57 + 1.52 \cdot \mathsf{AGE} \end{aligned}
$$

For the smokers $(SMK = 1)$:

$$
\begin{aligned} \mathsf{SBP} = & \hat{b}_0 + \hat{b}_1 \cdot \mathsf{AGE} + \hat{b}_2 \cdot 1 + \hat{b}_3 \cdot \mathsf{AGE} \cdot 1 \\ = & 45.72 + 1.96 \cdot \mathsf{AGE} \end{aligned}
$$

Other possible interactions

```
> fit <- lm(SBP ~ OUET*SMK, data=bloodpressure)
> summarv(fit)Call:lm(formula = SBP ~ OUET * SMK, data = bloodpressure)Residuals:
    Min
             10 Median
                              30
                                     Max
-22.3713 - 5.5705 - 0.6357 7.4972 17.1051
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.312 19.972 2.469 0.0199 *
         26.303 5.703 4.612 8.01e-05 ***
QUET
          29.944 24.164 1.239 0.2256
SMK
QUET:SMK -6.185 6.932 -0.892 0.3799
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 8.948 on 28 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6137
F-statistic: 17.42 on 3 and 28 DF, p-value: 1.408e-06
```
Other possible interactions

```
> fit <- lm(SBP ~ OUET*AGE, data=bloodpressure)
> summarv(fit)Gal1:lm(formula = SBP ~ OUET * AGE, data = bloodpressure)Residuals:
   Min
            10 Median
                           30
                                 Max
-13.385 -6.208 -2.284 6.243 21.926
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 207.3696 86.3654 2.401
                                       0.0232 *
OUET
           -34.1170 25.2168 -1.353 0.1869
AGE
           -1.8468 1.6686 -1.107 0.2778
OUET:AGE   0.8224   0.4625   1.778   0.0863  .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.601 on 28 degrees of freedom
Multiple R-squared: 0.6776, Adjusted R-squared: 0.6431
F-statistic: 19.62 on 3 and 28 DF, p-value: 4.742e-07
```
Model selection

- \triangleright None of these interactions had significant effects, so in the light of a parsimony criterion (so to save degrees of freedom) we will skip the interactions in the final model.
- \blacktriangleright Automatic model selection is possible, but hard to use in practice.
- \triangleright Models motivated by causal interpretations should be based on subject matter knowledge, not just an algorithm.

Final multiple regression model

No significant interactions, so we end up with the following model:

$$
SBP = b_0 + b_1 \cdot AGE + b_2 \cdot QUET + b_3 \cdot SMK
$$

```
> fit < -1m(SBP ~ 0UET + AGE + SMK, data = bloodpressure)> summarv(fit)Call:lm(formula = SBP ~ 0UET + AGE + SMK. data = bloodpressure)Residuals:
    Min
              10 Median
                               30
                                       Max
-13.5420 -6.1812 -0.72825.2908 15.7050
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1032
                       10.7649 4.190 0.000252 ***
OUET
             8.5924
                        4.4987 1.910 0.066427.
            1.2127   0.3238   3.745   0.000829
AGE
SMK
             9.9456
                        2.6561 3.744 0.000830
---
               0 **** 0.001 *** 0.01 ** 0.05 '.'
Sianif, codes:
Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: 0.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
```
Interaction

- Interaction means that the effect of a variable depends on a second variable,
- \triangleright Not the same a confounding variable,
- \triangleright Multivariate regression enables us to analyze interaction effects,
- \triangleright We often need large data sets to get significant interaction effects.
- \blacktriangleright A variable *Z* that has an interaction effect on variable *X* is sometimes called an effect modifier of *X*.

Assumptions: residuals

$$
e_1 = y_1 - \hat{\beta}_0 - \hat{\beta}_1 \cdot x_{11} - \dots - \hat{\beta}_p \cdot x_{p1}
$$

\n:
\n:
\n
$$
e_n = y_n - \hat{\beta}_0 - \hat{\beta}_1 \cdot x_{1n} - \dots - \hat{\beta}_p \cdot x_{pn}
$$

- \triangleright Divide by empirical standard deviation to get standardized residuals,
- \triangleright Standardized residuals should:
	- \blacktriangleright Be independent,
	- \triangleright Be normally distributed around 0, regardless of the size of the fitted value.

Check assumptions with R

- \triangleright Normality plot for residuals (Normal Q-Q plot): top-right plot on next slide
- \triangleright Residual plot: Plot residuals against fitted values: top-left and bottom-left plots on next slide

Model diagnostics plots in R

Explanatory variables with more than two categories

We will go back to the birth weight data set (birth.dta).

Response variables:

BWT Birth weight

Explanatory variables:

- AGE Age
- LWT Mothers weight
- SMK Smoking status
- ETH Ethnicity, $1 =$ White, $2 =$ Black, $3 =$ Other

Categorical variables with more than two levels

- \triangleright Are formally included in the analysis with dummy variables,
- In some softwares (e.g. SPSS) one has to manually construct two dummy-variables to include ethnicity.
- \blacktriangleright In R this is done automatically provided we make sure that the categorical variable is included as a factor variable.
- \triangleright Character variables are automatically translated into factor, but not numeric variables.
- \triangleright With this, R will internally create two new dummy variables under the hood:

Simple regression including a categorical predictor (with more than 2 levels)

```
> fit <- lm(bwt ~ a s.factor(eth), data=birth)> summary(fit)
Call:lm(formula = but ~as.factor(eth), data = birth)Residuals:
    Min
              10 Median
                               30
                                       Max
-2095.01 -503.01 -13.74526.99
                                   1886.26
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   2719.69
                               140.04 19.420 <2e-16 ***
as.factor(eth)other 84.32
                           165.00  0.511  0.6099
as.factor(eth)white 384.05
                               157.87 2.433 0.0159 *
Signif. codes:
               0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
Residual standard error: 714.1 on 186 degrees of freedom
Multiple R-squared: 0.05075, Adjusted R-squared: 0.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
```
Simple regression including a categorical predictor (with more than 2 levels)

```
> #Since eth is a character variable (text, not numbers). R will actually
> #automatically translate it into a factor variable:
> fit <- lm(bwt \sim eth, data=birth)> summarv(fit)Call:lm(formula = but ~e-th, data = birth)Residuals:
    Min
              10 Median
                               30
                                       Max
-2095.01 -503.01 -13.74 526.99 1886.26Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2719.69 140.04 19.420 <2e-16 ***
ethother
           84.32 165.00 0.511 0.6099
             384.05 157.87 2.433 0.0159 *
ethwhite
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 714.1 on 186 degrees of freedom
Multiple R-squared: 0.05075, Adjusted R-squared: 0.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
```
Multiple regression with all available predictors: AGE, LWT, SMK and ETH

```
> fit <- lm(bwt ~ aqe + lwt + smk + eth, data=birth)> summarv(fit)Call:lm(formula = but ~age + lwt + smk + eth, data = birth)Residuals:
    Min
             10 Median 30
                                     Max
-2281.79 -447.32 22.18 472.27 1747.79Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2330.426 337.061 6.914 7.61e-11 ***
        -2.036 9.817 -0.207 0.835894
age
          3.999 1.737 2.302 0.022480 *
lwt
smksmoker -400.326 109.207 -3.666 0.000323 ***
ethother 110.929 166.953 0.664 0.507251
ethwhite 511.535 157.028 3.258 0.001339 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 681.9 on 183 degrees of freedom
Multiple R-squared: 0.1484, Adjusted R-squared: 0.1251
F-statistic: 6.377 on 5 and 183 DF, p-value: 1.744e-05
```
Testing if the multi-level categorical variable is significant

Once we have fitted a regression model including a multi-level categorical variable, we might want to test if there is a significant overall effect of that variable.

We do not get this from the regression output, but we can use the anova command to perform a so-called likelihood-ratio test, which compares the model with ETH to the model without ETH.

Remember that 'ETH' is encoded with 2 'dummy variables': R then tests the null-hypothesis that the regression coefficient for both dummy variables are equal to 0.

R output

```
> fit <- lm(bwt ~ age + lwt + smk + eth, data=birth)> fit0 <- lm(bwt ~ age ~ + lwt ~ + smk, data=birth)> anova(fit0, fit)
Analysis of Variance Table
Model 1: bwt \sim age + lwt + smk
Model 2: bwt \sim age + lwt + smk + eth
  Res.Df
              RSS Df Sum of Sq
                                   - F
                                         Pr(>=F)185 92935223
1
2
     183 85091158 2 7844064 8.4349 0.0003133
                0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
Signif. codes:
```
Note that the *p*-value is 0*.*0003, so the variable is significant.

Robustness: leverage and influence of observations

- \triangleright Sometimes a single individual can have a huge influence on the estimates in a regression model,
- \triangleright This is something we want to avoid as it makes the conclusion more arbitrary,
- \triangleright A single individual will typically have more influence on the final estimate if it is very untypical in terms of covariates, and also has a relatively large residual value,
- \blacktriangleright How different an individual is from the average, in terms of covariates, is quantified by the 'leverage',
- It is common to assess the influence by plotting the squared residual against the leverage for every individual,
- \triangleright We can use the fourth plot of the model diagnostics plots that are generated by running plot(fit).

Standardized residuals vs leverage

- \triangleright Potential influence points are indicated by their ID.
- ▶ We can use Cook's distance > 1 as an indication for a potential influence point (not the case here).

Summary

Key words

- \blacktriangleright Multiple linear regression
- \triangleright Confounder / collider (more tomorrow)
- \blacktriangleright Interaction effects
- \triangleright Categorical covariates with more than 2 levels
- \blacktriangleright Regression assumptions / leverage effect

Statistical Science 2010, Vol. 25, No. 3, 289-310 DOI: 10.1214/10-STS330 C Institute of Mathematical Statistics, 2010

To Explain or to Predict?

Galit Shmueli

Statistical modeling is a powerful tool for developing and testing Abstract. theories by way of causal explanation, prediction, and description. In many disciplines there is near-exclusive use of statistical modeling for causal explanation and the assumption that models with high explanatory power are inherently of high predictive power. Conflation between explanation and pre-

To Explain To Predict or **To Describe?**

ISBIS 2019 Satellite Conference August 15-16, 2019 Lanai Kijang, Kuala Lumpur, Malaysia

Definitions: Describe

Descriptive modeling

statistical model for approximating a distribution or relationship

Descriptive power

goodness of fit, generalizable to population

Description: **Sailer et al. (2023)**. Caressed by music: Related preferences for velocity of touch and tempo of music?

- \triangleright Describe relationships between variables x and y.
- \triangleright We are mainly interested in: the fitted regression curve

Definitions: Explain

Explanatory modeling

theory-based, statistical testing of causal hypotheses

Explanatory power

strength of relationship in statistical model

Explanation: **Kristiansen et al. (2021)**. Mediators Linking Maternal Weight to Birthweight and Neonatal Fat Mass in Healthy **Pregnancies**

- \blacktriangleright Explain/ understand the nature of a relationships between variables *x* and *y*.
- \blacktriangleright We are mainly interested in: coefficients \hat{a} , \hat{b} and their p-values

Definitions: Predict

Predictive modeling

empirical method for predicting new observations

Predictive power

ability to accurately predict new observations

Prediction: **Maros et al. (2020)**. Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data

▶ Predict *y* from other data *x*

 \blacktriangleright We are mainly interested in: fitted/ predicted values \hat{y}

Different Scientific Goals Different *generalization*

Explanatory Model: test/quantify causal effect between constructs for "average" unit in population

Descriptive Model:

test/quantify distribution or correlation structure for *measured* "average" unit in population

Predictive Model: predict values for new/future individual units Summary: To explain, to predict or to describe

- \triangleright Description: Scatterplots with the fitted regression curves.
- \triangleright Explanation: Tables of the estimated regression coefficients with their confidence intervals (or standard errors) and p-values

Crucial that the model contains the right set of covariates (confounders, not colliders - see tomorrow) and that no strong multi-collinearity exists, normality of the residuals

Prediction: Prediction performance on a new never seen test data set, e.g. test RSS (sum of squares of residuals) or test *R*²

We do not care about the regression coefficients, therefore inclusion of confounders, avoidance of multi-collinearity etc. not so important.

For more details see the abridged Shmueli (2019) presentation provided to the class.