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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12

» Muiltiple linear regression (briefly: multiple regression)

» More on linear regression models: confounding, interactions,
categorical covariates with more than 2 levels, regression
assumptions, leverage effect.

» To explain, to predict or to describe?: How the purpose of the
analysis decides what is important.
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Outline for today

08.30-10.00:

10.15-11.15:
11.15-11.45:

>

12.45-13.45:

14.00-14.45:
14.45-15.15:

15.15-16.00:

Regression analysis Il: multiple regression, confounding,
interaction effects.

R exercise for regression Il.

Discussion of the R exercise for regression Il in class.
LUNCH

Regression analysis IlI: Multiple regression (continued),
categorical variables, assumptions, leverage effect.

R exercise for regression llI.

Discussion of the R exercises for regression Il in class.

To explain, to predict or to describe?: How the purpose of the
analysis decides what is important.
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Yesterday: Simple linear regression

A simple linear regression describes the relationship between 1
independent variable (covariate, or predictor) and the dependent
variable (response variable, or outcome) via a line.

Toy example: association between FEV1 and height.
Estimated regression line:

FEV1 ~ —9.19 4 0.07 - height (1)

FEV1

HEIGHT
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Relationship between simple linear regression and t-test
» There is a connection between the two approaches:
» Student’s t-test (with equal variances) for the difference in the
population mean between two independent groups is

equivalent to a simple linear regression with the grouping as
predictor variable.

Let us see this in a toy example:

Table 9.4 24 hour total energy expenditure (MJ/day)
in groups of lean and obese women (Prentice ef al.,
1986)

Lean Obese

(m = 13) (n=19)
6.13 870
708 919
T48 9.21
748 X
753 D6
T.58 9.97
700 11.51
B.08 11.8%
B0 12.79
811
§.40
10.15
10.88
Mean 8.066 10.298
sD 1.238 1.398

5 /56



R output for the t-test

R output for the Student’s t-test (with equal variances) for the
difference in energy between the lean and obese:

> t.test(energy ~ group, data=energy, var.equal=TRUE)
Two Sample t-test

data: energy by group
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means between group Lean and group Obese is not equal to ©
95 percent confidence interval:
-3.411451 -1.051796
sample estimates:
mean in group Lean mean in group Obese
8.066154 10.297778
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R output for the simple linear regression

> fit <- 1m(energy ~ group, data=energy)
> summary(fit)

Call:
Im(formula = energy ~ group, data = energy)

Residuals:
Min 1Q Median 3Q Max
-1.9362 -0.6153 -0.4070 0.2614 2.8138

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 8.0662 0.3618 22.297 1.34e-15 ***
groupObese 2.2316 0.5656 3.946 0.000799 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.304 on 2@ degrees of freedom
Multiple R-squared: ©.4377, Adjusted R-squared: 0.4096
F-statistic: 15.57 on 1 and 20 DF, p-value: 0.000799
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Multiple regression

» s an extension of the simple linear regression with one
independent variable (predictor / covariate),

» Still a continuous response (dependent) variable, but several
explanatory (independent) variables (multiple predictors /
covariates),

» The independent variables can be continuous, dichotomous or
have more than two categories,

» The multiple linear regression model is defined as

Y = by + bia1 + - - + by,
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Regression coefficients

Y =byg+bix1+ -+ bpxy.

» by,...,b, are called regression coefficients,

P> b; can be interpreted as the effect of one unit increase of the
variable z; when the other variables remain unchanged,

» also called adjusted effect,

> Not necessarily a causal effect.
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Interpretation

Regression with two
independent variables:

» Geometrically this corresponds to
viewing data as points in a
high-dimensional space.

» Beyond three dimensions we cannot
picture such a space, but
mathematically there is no difficulty
with high-dimensional spaces.
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Mean PEF by height and weight for 95

students R
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Multiple regression via a toy example

Example: data on systolic blood pressure

Description Name
Id Id
Systolic blood pressure SBP
Quetelet index (BMI)  QUET
Age AGE
Smoking status SMK
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Simple linear

regression: SBP vs AGE

> fit <- 1m(SBP ~ AGE, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-15.548 -6.990 -2.481 5.765 23.892

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 59.0916 12.8163 4.611 6.98e-05 ***
AGE 1.6045 0.2387 6.721 1.89e-07 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ‘> 1

Residual standard error: 9.245 on 30 degrees of freedom
Multiple R-squared: 0.6009, Adjusted R-squared: 0.5876
F-statistic: 45.18 on 1 and 30 DF, p-value: 1.894e-07

» Note that by = 59.09 and b; = 1.61,

» Confidence interval for by (1.12,2.09) (calculate in R with

confint())
> Hj: by =0 is rejected, as p < 0.001.
» SBP increases 1.6 units for each year.
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Simple linear regression: SBP vs Age

> plot(SBP ~ AGE, data=bloodpressure)
> abline(reg=fit, col="red")
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Simple linear regression: SBP vs QUET

> fit <- 1m(SBP ~ QUET, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-19.231 -7.145 -1.604 7.798 22.531

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 70.576 12.322 5.728 2.99%e-06 ***
QUET 21.492 3.545 6.062 1.17e-06 ***

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 9.812 on 3@ degrees of freedom

Multiple R-squared: 0.5506, Adjusted R-squared: 0.5356
F-statistic: 36.75 on 1 and 30 DF, p-value: 1.172e-06

> Note that by = 70.58 and by = 21.49,

» Confidence interval for by (14.25,28.73) (calculate in R with
confint())

» Hy:b; =0 is rejected, as p < 0.001.

» SBP increases 21.49 units for each unit of QUET.
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Simple linear regression: SBP vs QUET

>
>

plot(SBP ~ QUET, data=bloodpressure)
abline(reg=fit, col="red")

SBP

I
o

120 130 140 150 160 170 180
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Multiple regression: Combining AGE and QUET

> fit <- 1m(SBP ~ QUET + AGE, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-11.667 -6.793 -2.732 5.318 19.600

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 55.3234 12.5347  4.414 0.000129 ***
QUET 9.7507 5.4025 1.805 0.081489
AGE 1.0452 0.3861 2.707 0.011253 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 8.916 on 29 degrees of freedom

Multiple R-squared: 0.6412, Adjusted R-squared: 0.6165
F-statistic: 25.92 on 2 and 29 DF, p-value: 3.505e-07

» QUET does not have a significant effect on SBP, when
adjusting for AGE,

» When AGE increases, then SBP will increase with 1.045 units,

» This is a significant increase (p = 0.01), confidence interval
(0.26,1.84) (calculate in R with confint()).
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Confounding

What did we learn from the two previous models?

> Adjustment for AGE leads to a weaker relationship between
SBP and QUET.

» AGE is associated with both SBP and QUET, and affects the
association between them.

This implies that AGE is a confounding variable.
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Confounders (more on this topic tomorrow)

Definition

A confounder is a variable that is a common cause of the
exposure and the response (disease), and NOT an effect of the
exposure or the disease.

» Confounding variables are important when we want to
estimate (causal) effects from various exposures.

P As they cause both the exposure and the response, they are
likely to cause biases.

> They can be dealt with by adjusting in a multiple
regression model: always adjust for potential confounders by
including them in the regression model!

» Multivariate regression models are thus important to include
potential relevant variables.

» Be careful not to include common effects (also called
colliders).
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Simple linear

regression: SBP vs SMK

> fit <- Im(SBP ~ SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-21.824 -9.056 -2.812 11.200 32.176
Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) 140.800 3.661 38.454 <2e-16 ***
SMK 7.024 5.023 1.398 0.172

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 14.18 on 30 degrees of freedom
Multiple R-squared: ©.06117, Adjusted R-squared: ©.02988

F-statistic: 1.955 on 1 and 3@ DF, p-value: 0.1723

» Note that by = 140.80 and b; = 7.02,

» Confidence interval for by (—3.24,17.28) (calculate in R with

confint())
> Hj: by =0 is not rejected, as p = 0.17,
> Average difference between the two groups is 7.02.




Simple linear regression: SBP vs SMK

plot(SBP ~ SMK, data=bloodpressure)
abline(reg=fit, col="red")
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Multiple regression: Combining AGE, QUET and SMK

> fit <- 1m(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 45.1032 10.7649  4.190 0.000252 ***

QUET 8.5924 4.4987 1.910 0.066427
AGE 1.2127 0.3238  3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 7.407 on 28 degrees of freedom

Multiple R-squared: ©.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09

» Both AGE and SMK have significant effects,

» When AGE increases 1 unit, SBP increases with 1.2 units,

» Confidence interval: (0.55,1.88), p = 0.001,

» Smokers have 10 units higher SBP than non-smokers,
confidence interval (4.5,15.4), p = 0.001.
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Removing QUET from the model

> fit <- Im(SBP ~ AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-10.639 -5.518 -1.637 4.900 19.616

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 48.0496 11.1296 4.317 0.000168 ***
AGE 1.7092 0.2018  8.471 2.47e-09 ***
SMK 10.2944 2.7681  3.719 0.000853 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 7.738 on 29 degrees of freedom
Multiple R-squared: 0.7298, Adjusted R-squared: 0.7112
F-statistic: 39.16 on 2 and 29 DF, p-value: 5.746e-09

» Both AGE and SMK still have significant effects.

» Removing QUET lead to a slight decrease in the R?: we
might consider keeping it.
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Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 - AGE + 10.29 - SMK

» One year increase in age yields an increase of SBP 1.71 units,
» Non-smokers model: SBP = 48.05 + 1.71 - AGE
» Smokers model: SBP = 58.34 + 1.71 - AGE

160
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Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 - AGE + 10.29 - SMK

» One year increase in age yields an increase of SBP 1.71 units,
» Non-smokers model: SBP = 48.05 + 1.71 - AGE
» Smokers model: SBP = 58.34 + 1.71 - AGE

160

AGE

» The effect on SBP of the increase in AGE is the same
regardless if one is a smoker or not. Is this realistic?

» NO — In reality, the effect of age could be larger for smokers.
25 /56



Interaction between two explanatory variables

> If the effect of one variable might depend on another variable,

» we have to build a common model for main effects as well as
interactions:

SBP = by + b1 - AGE + by - SMK + b3 - AGE - SMK

» This is easily done in R with either the “*" or “:" operators:

Im(SBP ~ AGE*SMK, data=bloodpressure)
or
Im(SBP ~ AGE + SMK + AGE:SMK, data=bloodpressure)
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Interaction between two explanatory variables

> fit <- 1m(SBP ~ AGE*SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE * SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-11.036 -4.961 -1.958 5.552 20.665

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 58.5743 14.8048 3.956 0.000472 ***

AGE 1.5152 0.2703 5.605 5.32e-06 ***
SMK -12.8460 21.7153 -0.592 0.558888
AGE: SMK 0.4349 0.4048 1.074 0.291840

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 < ’ 1

Residual standard error: 7.717 on 28 degrees of freedom
Multiple R-squared: ©.7405, Adjusted R-squared: 0.7127
F-statistic: 26.63 on 3 and 28 DF, p-value: 2.369e-08

> Note that the interaction term is not significant, so we may
drop this from the model if there are no particular
biological /clinical reasons for keeping it,
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Interpretation
For the non-smokers (SMK =0):

SBP =by + by - AGE + by - 0 + bs - AGE - 0
=58.57 + 1.52 - AGE
For the smokers (SMK = 1):
SBP =by + by - AGE + by - 1 4 bg - AGE - 1
=45.72 + 1.96 - AGE
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Other possible interactions

> fit <- Im(SBP ~ QUET*SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET * SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-22.3713 -5.5705 -0.6357 7.4972 17.1051

Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) 49.312 19.972 2.469 0.0199 *

QUET 26.303 5.703 4.612 8.01le-05 ***
SMK 29.944 24.164 1.239 0.2256
QUET:SMK -6.185 6.932 -0.892 0.3799

Signif. codes: @ ‘***’ 0.001 ‘*** @0.01 ‘*’ 9.05 ‘.’ 0.1 ¢ * 1

Residudl standard error: 8.948 on 28 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: ©.6137
F-statistic: 17.42 on 3 and 28 DF, p-value: 1.408e-06
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Other possible interactions

> fit <- 1m(SBP ~ QUET*AGE, data=bloodpressure)
> summary(fit)

Call:
lm(formula = SBP ~ QUET * AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.385 -6.208 -2.284 6.243 21.926

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 207.3696 86.3654 2.401 0.0232 *

QUET -34.1170 25.2168 -1.353 0.1869
AGE -1.8468 1.6686 -1.107 0.2778
QUET :AGE 0.8224 0.4625 1.778 ©0.0863 .

Signif. codes: @ “***° 9,001 ‘**’ @.01 ‘*’ 0.05 ‘.” 0.1 ‘ * 1

Residual standard error: 8.601 on 28 degrees of freedom
Multiple R-squared: ©.6776, Adjusted R-squared: 0.6431
F-statistic: 19.62 on 3 and 28 DF, p-value: 4.742e-07
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Model selection

» None of these interactions had significant effects, so in the
light of a parsimony criterion (so to save degrees of freedom)
we will skip the interactions in the final model.

> Automatic model selection is possible, but hard to use in
practice.

» Models motivated by causal interpretations should be based
on subject matter knowledge, not just an algorithm.
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Final multiple regression model

No significant interactions, so we end up with the following model:

SBP =bp + b1 - AGE + by - QUET + b3 - SMK

> fit <- 1m(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 45.1032 10.7649  4.190 0.000252 ***

QUET 8.5924 4.4987 1.910 0.066427
AGE 1.2127 0.3238  3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: ©.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
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Interaction

» Interaction means that the effect of a variable depends on a
second variable,

» Not the same a confounding variable,

» Multivariate regression enables us to analyze interaction
effects,

> We often need large data sets to get significant interaction
effects.

» A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Assumptions: residuals

61:yl_/BO_Bl'xll_"'_/Bp'xpl
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» Divide by empirical standard deviation to get standardized
residuals,
» Standardized residuals should:

» Be independent,
» Be normally distributed around 0, regardless of the size of the
fitted value.
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Check assumptions with R

» Normality plot for residuals (Normal Q-Q plot):
top-right plot on next slide

» Residual plot: Plot residuals against fitted values:
top-left and bottom-left plots on next slide
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Model diagnostics plots in R

Residuals vs Fitted Normal Q-Q
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Explanatory variables with more than two categories

We will go back to the birth weight data set (birth.dta).

Response variables:
BWT Birth weight

Explanatory variables:
AGE Age
LWT Mothers weight
SMK Smoking status
ETH Ethnicity, 1 = White, 2 = Black, 3 = Other
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Categorical variables with more than two levels

» Are formally included in the analysis with dummy variables,

» In some softwares (e.g. SPSS) one has to manually construct
two dummy-variables to include ethnicity.

» In R this is done automatically provided we make sure that
the categorical variable is included as a factor variable.

» Character variables are automatically translated into factor,
but not numeric variables.

» With this, R will internally create two new dummy variables
under the hood:

ETH | Eth(1) Eth(2)

White 0 0
Black 1 0
Other 0 1
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Simple regression including a categorical predictor (with
more than 2 levels)

> fit <- Im(bwt ~ as.factor(eth), data=birth)
> summary(fit)

Call:
Im(formula = bwt ~ as.factor(eth), data = birth)

Residuals:
Min 1Q Median 3Q Max
-2095.01 -503.01 -13.74 526.99 1886.26

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2719.69 140.04 19.420 <2e-16 ***
as.factor(eth)other 84.32 165.00 0.511 0.6099
as.factor(eth)white  384.05 157.87 2.433 0.0159 *

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 714.1 on 186 degrees of freedom
Multiple R-squared: @.05075, Adjusted R-squared: ©.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
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Simple regression including a categorical predictor (with
more than 2 levels)

> #Since eth is a character variable (text, not numbers), R will actually
> #automatically translate it into a factor variable:

> fit <- lm(bwt ~ eth, data=birth)

> summary(fit)

Call:

Im(formula = bwt ~ eth, data = birth)

Residuals:
Min 1Q Median 3Q Max
-2095.01 -503.01 -13.74 526.99 1886.26

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 2719.69 140.04 19.420 <2e-16 ***
ethother 84.32 165.00 0.511 0.6099
ethwhite 384.05 157.87 2.433 0.0159 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ‘ ’ 1

Residual standard error: 714.1 on 186 degrees of freedom
Multiple R-squared: .05075, Adjusted R-squared: ©.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
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Multiple regression with all available predictors:
AGE, LWT, SMK and ETH

> fit <- Im(bwt ~ age + lwt + smk + eth, data=birth)
> summary(fit)

Call:
1m(formula = bwt ~ age + 1wt + smk + eth, data = birth)

Residuals:
Min 1Q Median 3Q Max
-2281.79 -447.32 22.18 472.27 1747.79

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 2330.426 337.061 6.914 7.6le-11 ***
age -2.036 9.817 -0.207 0.835894
1wt 3.999 1.737 2.302 0.022480 *
smksmoker  -400.326 109.207 -3.666 ©0.000323 ***
ethother 110.929 166.953 0.664 0.507251
ethwhite 511.535 157.028 3.258 ©.001339 **

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 681.9 on 183 degrees of freedom
Multiple R-squared: 0.1484, Adjusted R-squared: @.1251
F-statistic: 6.377 on 5 and 183 DF, p-value: 1.744e-05
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Testing if the multi-level categorical variable is significant

Once we have fitted a regression model including a multi-level
categorical variable, we might want to test if there is a significant
overall effect of that variable.

We do not get this from the regression output, but we can use the
anova command to perform a so-called likelihood-ratio test, which
compares the model with ETH to the model without ETH.

Remember that 'ETH’ is encoded with 2 'dummy variables’: R

then tests the null-hypothesis that the regression coefficient for
both dummy variables are equal to 0.
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R output

> fit <- Im(bwt ~ age + 1wt + smk + eth, data=birth)
> fit@ <- 1m(bwt ~ age + 1wt + smk, data=birth)

> anova(fit@, fit)

Analysis of Variance Table

Model 1: bwt ~ age + 1wt + smk
Model 2: bwt ~ age + 1wt + smk + eth
Res.Df RSS Df Sum of Sq F Pr(>F)
1 185 92935223
2 183 85091158 2 7844064 8.4349 0.0003133 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 9.05 ‘.’ 9.1 ‘ * 1

Note that the p-value is 0.0003, so the variable is significant.
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Robustness: leverage and influence of observations

» Sometimes a single individual can have a huge influence on
the estimates in a regression model,

P This is something we want to avoid as it makes the conclusion
more arbitrary,

» A single individual will typically have more influence on the
final estimate if it is very untypical in terms of covariates, and
also has a relatively large residual value,

» How different an individual is from the average, in terms of
covariates, is quantified by the 'leverage’,

P It is common to assess the influence by plotting the squared
residual against the leverage for every individual,

» We can use the fourth plot of the model diagnostics plots that
are generated by running plot (fit).
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Standardized residuals vs leverage

Residuals vs Leverage

1890

Standardized residuals

) — T T T
0.00 0.05 0.10 0.15

Leverage
Im(bwt ~ age + Iwt + smk + eth)

» Potential influence points are indicated by their ID.

» We can use Cook’s distance > 1 as an indication for a
potential influence point (not the case here).
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Summary

Key words
» Multiple linear regression
» Confounder / collider (more tomorrow)
» Interaction effects
» Categorical covariates with more than 2 levels
>

Regression assumptions / leverage effect
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To Explain or to Predict?

Galit Shmueli

Abstract.  Statistical modeling is a powerful tool for developing and testing
theories by way of causal explanation, prediction, and description. In many
disciplines there is near-exclusive use of statistical modeling for causal ex-
planation and the assumption that models with high explanatory power are
inherently of high predictive power. Conflation between explanation and pre-
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Definitions: Describe

Descriptive modeling
statistical model for approximating
a distribution or relationship

Descriptive power
goodness of fit, generalizable to
population
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Description: Sailer et al. (2023). Caressed by music: Related
preferences for velocity of touch and tempo of music?

g e . . g . g - 5
A“//// — — — —
Sk oy Sy Sty Sk oy
.
o W m w A
FouRe 11
Touch (upper) and beat rating patterns (lower) with fit line for four participants. MSE=mean of the squared residuals as a measure of the goodness of
the fit.

» Describe relationships between variables = and y.

> We are mainly interested in: the fitted regression curve
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Definitions: Explain

Explanatory modeling
theory-based, statistical testing
of causal hypotheses

Explanatory power
strength of relationship in
statistical model
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Explanation: Kristiansen et al. (2021). Mediators Linking
Maternal Weight to Birthweight and Neonatal Fat Mass in Healthy
Pregnancies

M1: Maternal mediators

Fetal mediators
072

X Bxposure |/ o | [ outcome
variables Y/ "\ variable
[ f sirthweignt
> ai )
WG

€: Confounders: \
[rae] Gesatonl g2

Figure 4. The path analysis with birthweight as the outcome (n = 165) presented with standardized fs values. Red arrows symbolize a positive associ-
ation; blue boli dashed dicat
of adi  Age, maternal age; BMI, maternal pregestational body mass indox; Leptin, materal levels of leptin; AG,, fotal venous-arterial glu
cose difference; G,,,, maternal arterial levels of glucose; GWG, gestational weight gain; I, fetal venous levels of insulin; I, maternal arterial levels
of insulin; PW, placental weight; Sex, fetal sex. *P<.05; ** P< 01; *** P< 001

tion. Adi tin, maternal levels

» Explain/ understand the nature of a relationships between
variables x and y.

> We are mainly interested in: coefficients @, b and their p-values
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Definitions: Predict

Predictive modeling
/ﬁ empirical method for predicting
g new observations
y Predictive power
ability to accurately predict new
observations
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Prediction: Maros et al. (2020). Machine learning workflows to
estimate class probabilities for precision cancer diagnostics on DNA
methylation microarray data

F

Fig. 2 | External validation on various tumor types from TCGA. a-d, We generated the external validation cohort (n — 7.147) by extracting and
s 30 ifferent T . First,

» Predict y from other data =

» \We are mainly interested in: fitted/ predicted values §
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Monopolies in Different Fields

Describe

Social Sciences ‘ ‘ 'Statistics

Machine
Learning
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Different Scientific Goals
Different generalization

Explanatory Model:
test/quantify causal effect between constructs for
“average” unit in population

Descriptive Model:
test/quantify distribution or correlation structure for
measured “average” unit in population

Predictive Model:
predict values for new/future individual units
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Summary: To explain, to predict or to describe
» Description: Scatterplots with the fitted regression curves.

» Explanation: Tables of the estimated regression coefficients
with their confidence intervals (or standard errors) and
p-values

Crucial that the model contains the right set of covariates
(confounders, not colliders - see tomorrow) and that no strong
multi-collinearity exists, normality of the residuals

» Prediction: Prediction performance on a new never seen test
data set, e.g. test RSS (sum of squares of residuals) or test R?

We do not care about the regression coefficients, therefore
inclusion of confounders, avoidance of multi-collinearity etc.
not so important.

For more details see the abridged Shmueli (2019) presentation

provided to the class.
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