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Overview

Aalen chapter 13, Kirkwood and Sterne chapter 26
• Life tables and survival data
• Univariable survival analysis

▶ Survival curves
▶ Kaplan-Meier

• Multivariable survival analysis
▶ Cox regression and other alternatives
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1 Introduction: What makes survival data special?

Survival analysis
• Want to analyse data where time until an event is of interest -

often called failure time, survival time or event time
• One of the most applied statistical methodologies in

medicine
• Reinvented many times and also used extensively in other

fields, such as reliability engineering, sociology, demography
and actuarial science
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Statistical methods in the NEJM

• data from 311 articles published in volumes 350 through 352
(January 2004 through June 2005)

• Use of t-tests decreased from 44% in 1978-79 to 26% in
2004-05

• Only 21% of the articles are accessible to a reader with only
an introductory course in statistics

• >50% of the papers use more advanced statistical methods,
e.g. multiple regression and survival analysis
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History of survival analysis
• Roots back to John Graunt, who published Natural and

Political Observations Made upon the Bills of Mortality in
1662

• Graunt was interested in mortality during the last great
plague in Europe. He produced tables with commentaries, did
basic calculations, and compared the number of male and
female births and deaths

• Until well after the Second World War the field was dominated
by the classical approaches developed by the early actuaries

• Modern survival analysis started with Kaplan-Meier (1958),
Cox (1972) and Aalen (1975)
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Figure: Observations and the first known primitive life table, which
became one of the main tools of demography and insurance mathematics.
Grant is considered one of the first demographers and epidemiologists.
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Life tables
• Show the probability of surviving any particular year of age
• Can be used to calculate remaining life expectancy for

people at different ages
• Graunt’s data on deaths from Observations 1662 in a life

table:
Age Deaths Survivors

- - 100
0-6 36 64
6-16 24 40
16-26 15 25
26-36 9 16
36-46 6 10
46-56 4 6
56-66 3 3
66-76 2 1
76- 1 0
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Survival curves

Figure: Graunt’s survival curve compared to US 2000 mortality.
• Expected years of life in Graunt’s data: 18 (median survival)
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Response variables in survival analysis
• In regular survival analysis we study time until a

dichotomous (binary) outcome, e.g.:
▶ Time until death
▶ Time until tumor recurrence
▶ Time until AIDS for HIV patients
▶ Time until machine part fails
▶ Age at breast cancer diagnosis

• Durations are important clinical and epidemiological
outcome parameters
▶ What is the expected survival time for specific patient?
▶ Do patients live longer?
▶ Does the remission period increase?
▶ Can we postpone disease?
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What makes survival data special?
• Right skewed data

▶ Survival times are non-negative and therefore typically skew to
the right

▶ Naive analysis of un-transformed survival times unpromising
• Censoring

▶ Incompletely observed times
▶ Typically due to either 1) dropout or 2) end of study
▶ Not taking censoring into account can cause seriously biased

results
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Censoring and survival analysis
• Censoring rules out ordinary statistical methods for

survival time data
• In reality we keep track of time until two different types of

events: the event of interest and censoring, where the
latter includes any other events terminating observation
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Figure: Illustration of typical survival data on calendar scale.
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Figure: Illustration of typical survival data on study time scale.

Key concept
The risk set at time t - the individuals under observation at time t
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Figure: Illustration of typical survival data on study time scale.

Key concept
The risk set at time t - the individuals under observation at time t
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Censoring (cont)
• Traditional censoring is often called right censoring
• A related term is left truncation: e.g. if patients are not

included in the study from baseline, but come in later
Left censoring and right truncation also exists, but are not
common

• The key assumption of all basic survival methods is
independent censoring – The individuals which get censored
at any give time shall not differ (on average) from those
observed
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A small data example
• Dataset: 26, 17, 7*, 41, 34*, 9, 13, 25*, 37, 18

* denotes censoring time
• The same data ordered:

7*, 9, 13, 17, 18, 25*, 26, 34*, 37, 41
• The typical set-up for most software:

Time Event
26 1
17 1
7 0
41 1
...

...
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The survival and hazard

What makes survival data special?

• Survival function:

S(t) = P(event does not occur before time t)

• Hazard function or hazard rate:

h(t) = 1
dt P(event occur in (t, t +dt), given no event before t)
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Illustrations
• Survival curve: describe the proportion that survives up to

some time

• Hazard curve: describe the risk of the event (death, relapse
etc) as function of time
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Figure: Connecting hazard (left) and survival curves (right).
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Figure: The shapes of hazard curves - three examples.
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chapter 5170

where P is the probability of the event described in the parenthesis. This function

is always equal to 1 when the time, t, is zero, and decreases as t increases. A survival

function can be represented by a survival curve. (See examples in the right panel

of Figure 5.3.)

Another important term is hazard function. The hazard function is also known

as the intensity, and is closely related to epidemiological concepts like incidence

and mortality rate. Let us denote an interval . This interval starts at time

 and ends at time  As an example, say we start recording time after 20

hours. Then  We stop recording time three hours later. Then  and

the interval is (20, 23).

The hazard function, or hazard rate, at time  is defined as a mathematical

limit of the following expression when the time interval  becomes very short

(5.2)

In the recording time example, the right hand side of the equation means the

probability that the event we are studying will occur after 20 hours but before 23

hours have passed, given that the event did not happen before 20 hours, divided

by the length of the interval, i.e., 3.

The hazard function is a measurement of the risk of an event occurring, and illus-

trates how this risk changes with time. It is measured as probability per time unit.

Figure 5.2 Hazard rates of divorce for Norwegian couples married in 1960, 1970, and
1980. (Based on data from Statistics Norway.)
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Figure: Rates of divorces for couples married in Norway in 1960, 1970
and 1980 (hazard/incidence rate).
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Figure: “Survival” of marriages among the same couples.
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Exercise: Connect the hazard and survival functions!
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Formal notation
• T denotes the response variable, T ≥ 0

• S(t) = P(T > t)

• h(t) = lim∆t→0
P(t<T≤t+∆t|T>t)

∆t

Formal connection of hazards and survival
• Cumulative hazard rate: H(t) =

∫ t
0 h(s)ds

• Survival function: S(t) = exp(−H(t)) = exp(−
∫ t

0 h(s)ds)

• Hazard rate: h(t) = − d
dt ln(S(t)) = −S′(t)

S(t)
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2 Univariable survival analysis: Kaplan-Meier & Logrank

Estimating the survival function: The Kaplan-Meier estimator
• Let all event times be ordered and tj be the j ’th event

Let rj be the number at risk at time tj

The Kaplan-Meier estimator for the probability of
surviving until time t is given by

Ŝ(t) =
∏
tj ≤t

(1 − 1
rj

)
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Example: Kaplan-Meier
• Multiply survival probabilities for small intervals

Survival: (1 − 1
9) × (1 − 1

8) × (1 − 1
7) × ...
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Example: Kaplan-Meier
• Small example from earlier:

Patient Survival Patients Survival K-M
no. time at risk factors estimator
1 7* 10 1 1.00
2 9 9 1 - 1/9 0.89
3 13 8 1 - 1/8 0.78
4 17 7 1 - 1/7 0.67
5 18 6 1 - 1/6 0.56
6 25* 5 1 0.56
7 26 4 1 - 1/4 0.42
8 34* 3 1 0.42
9 37 2 1 - 1/2 0.21
10 41 1 1 - 1/1 0
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Figure: Kaplan-Meier plot.

• Median survival: 26 days
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Exercise: Kaplan-Meier
• Compute the Kaplan-Meier survival probabilities for the

following survival data :

5, 12*, 14, 16*, 20

(e.g. by filling in a table as earlier)

• Make a sketch of the survival curve
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Basic survival analysis in R: Getting started
• We need the R package survival
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Set up a survival variable

• We use the function Surv(time, status) to set up a
survival variable.

• The data need to be on the following form:

id time status
1 26 1
2 17 1
3 7 0
4 41 1
...

...
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R help page for Surv
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Example data set aml in the survival package
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Plotting Kaplan-Meier curves
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Annotate Kaplan-Meier curves
• with censoring marks, axis labels and labelled curves:
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Plotting Kaplan-Meier curves with CIs
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Comparing groups
Option 1: Compare survival rates at a specified time point, e.g
5-year survival after melanoma surgery

Figure: Kaplan-Meier plot for woman (red) and men (blue).

• Five year survival for women: 82%; and for men: 68%
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Comparing groups

Option 2: Report median survival probabilities

• Time when the survival probability is 50% in both groups with
95% confidence intervals
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Comparing groups

Option 2: Report median survival probabilities

• If the median survival probability is not reached in the
observed time frame, then the estimate is reported as NA
(missing); equivalently for the confidence limits
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The log-rank test
• The most common test for the difference between two

survival curves; also called the Mantel-Cox test
• Test two general hazard functions, h1(t) and h2(t) which we

assume to have a proportional relationship.
Test hypotheses:
▶ H0 : h1(t) = h2(t)

Ha : h1(t) ̸= h2(t)
• P-value less than 0.05 ⇒ the hazards are different

between groups
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Proportional hazards and log-rank
• The log-rank test is optimal for proportional hazards type

of comparisons (in term of power)
• The log-rank test can fail if the hazards are crossing (do not

confuse crossing hazards with crossing survival curves)
• Other tests are more suitable for crossing hazards
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Log-rank test for difference between groups in R

• Example for how to report this result in a paper:
There was no statistically significant difference between
the survival curves for the groups with versus without
maintainance chemotherapy (log-rank test, chisq=3.4,
p=0.07).
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3 Multivariable survival analysis: Cox regression and Co.

Cox regression is the standard approach to add covariates to
the analyses

• Model

hi(t) = h0(t) · exp(β1xi1 + β2xi2 + ... + βkxik)
= h0(t) · exp(β1xi1) · exp(β2xi2) · ... · exp(βkxik)

• For example: Say that x1 is smoking (0/1).

HRsmokers/non−smokers = h0(t) exp(β1 · 1)
h0(t) exp(β1 · 0) = exp(β1)

• Assumption:
▶ Proportional hazards, hence; The Cox PH model
▶ Multiplicative risk
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Cox vs logistic regression
• Cox model the hazard rate (rate per unit time), while logistic

regression model the proportion in a given time period
• Logistic regression aim to estimate the odds ratio, while Cox

estimate the hazard ratio
• Main practical difference: survival models handle censoring

• Note: there are other regression models for survival than Cox,
e.g. Aalen’s additive model
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Other models for multivariable survival analysis
• Alternatives excists, for example Aalen’s additive model

▶ Does not assume proportional hazards or multiplicative risk
• Combinations of Cox and additive models
• Accelerated failure-time models

Cox regression is however the dominating model, and the focus in
this course.
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4 Summary

Key words
• Survival times and censored data
• The survival function and the Kaplan-Meier estimator
• Compare groups: Median survival probabilities or survival

rates at a fixed time point (e.g. 5-year survival rates)
• Log-rank test

• (Cox proportional hazards regression)

Notation
• S(t), H(t) and h(t)
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