Logistic regression. Some more on confounders (\& colliders).

Manuela Zucknick
Oslo Center for Biostatistics and Epidemiology, UiO manuela.zucknick@medisin.uio.no

MF9130 - Introductory Statistics
May 11, 2023

Recap

	Disease	No disease
Exposed	a	c
Not exposed	b	d

- Odds for disease among the exposed

$$
\frac{\hat{p}_{1}}{1-\hat{p}_{1}}=\frac{a /(a+c)}{c /(a+c)}=\frac{a}{c}
$$

- Odds for disease among the non-exposed

$$
\frac{\hat{p}_{0}}{1-\hat{p}_{0}}=\frac{b /(b+d)}{d /(b+d)}=\frac{b}{d}
$$

- Estimated odds ratio

$$
O R=\frac{a / c}{b / d}=\frac{a \times d}{b \times c}
$$

Example: Smoking and low birth weight (birth.csv)

	LOW ≤ 2500	LOW >2500
SMK $=1$	30	44
SMK $=0$	29	86

- $O R=\frac{a \times d}{b \times c}=\frac{30 \times 86}{2944}=2.02$
- 95% confidence interval:

$$
\left(e^{\ln (\mathrm{OR})-1.96 \mathrm{SE}(\ln (\mathrm{OR}))}, e^{\ln (\mathrm{OR})+1.96 \mathrm{SE}(\ln (\mathrm{OR}))}\right),
$$

where $\mathrm{SE}\left(\ln (\mathrm{OR})=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}\right.$

- With numbers from table: $(1.08,3.78)$

Regression analysis

- Response variable (dependent variable) Y,
- Predictor variables (independent variables) X_{1}, \ldots, X_{n},
- Want to establish a simple formula that provides good predictions of the outcomes of Y based on the outcomes of X_{1}, \ldots, X_{n},

Example: multiple linear regression

$$
Y=\beta_{0}+\beta_{1} X_{1}+\ldots \beta_{n} X_{n}
$$

- Y continuous variable, and X_{1}, \ldots, X_{n} continuous or categorical,
- Example (birth.csv):
- Y birth weight,
- X_{1} Weight of mother,
- X_{2} Smoking,
- Hypertension,
- Age.

Logistic regression

- Response variable is dichotomous, a variable that typically is 1 if a person has a given disease, and 0 if it does not,
- $p=P\left(Y=1 \mid x_{1}, \ldots, x_{n}\right)$ is the (conditional) probability that the person has the disease,
- $1-p=P\left(Y=0 \mid x_{1}, \ldots, x_{n}\right)$ is the (conditional) probability that the person does not have the disease,
- $0 \leq p \leq 1$.

Logistic regression

- Assume that p depends on the outcomes x_{1}, \ldots, x_{n},
- We want to describe the function

$$
p=p\left(x_{1}, \ldots, x_{n}\right)
$$

- Works better to go through odds:

$$
\text { Odds }=\frac{p}{1-p}
$$

Logistic regression

- Model for odds:

$$
\frac{p}{1-p}=\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots \beta_{n} x_{n}\right)
$$

- Apply logarithm on both sides:

$$
\log \frac{p}{1-p}=\beta_{0}+\beta_{1} x_{1}+\ldots \beta_{n} x_{n}
$$

- Or equivalently:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots \beta_{n} x_{n}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots \beta_{n} x_{n}\right)}
$$

The logit function

Example

- Want to identify risk factors for low birth weight,
- "birth.csv" contains data on 189 women,
- Response variable [LOW]: 1 means $\leq 2500 \mathrm{~g}$ and 0 means ≥ 2500,
- Some explanatory variables:

AGE Mother's age,
LWT Weight before pregnancy,
ETH Ethnicity,
SMK Smoking during pregnancy.

Example (cont.): logistic regression

- χ^{2}-test gives a significant association ($p=0.026$),
- We can use logistic regression to estimate the odds ratio,
- p is the risk of low birth weight,
- x is the smoking status of the mother,
- The model:

$$
\log \frac{p}{1-p}=\beta_{0}+\beta_{1} x
$$

Logistic regression and odds ratio

- Odds for smokers

$$
\operatorname{Odds}_{X=1}=e^{\beta_{0}+\beta_{1} \cdot 1}
$$

- Odds for non-smokers

$$
\operatorname{Odds}_{X=0}=e^{\beta_{0}+\beta_{1} \cdot 0}
$$

- Odds ratio:

$$
\mathrm{OR}=\frac{\operatorname{Odds}_{X=1}}{\operatorname{Odds}_{X=0}}=\frac{e^{\beta_{0}+\beta_{1}}}{e^{\beta_{0}}}=e^{\beta_{1}}
$$

- Logistic regression gives estimated odds ratio.

Logistic regression in R

- Dependent variable: LOW. Independent variable: SMK.
- We use the command glm(..., family="binomial") (glm for generalized linear model)
- Note that the dependent variable needs to be coded as $0 / 1$ or be a factor variable.
- Here, LOW is a character variable, which results in an error message. LOW needs to be transformed.

```
> glm(low ~ smk, data=birth, family="binomial")
Error in eval(family$initialize) : y values must be 0 <= y <= 1
```


Logistic regression in R

- We decide to make a new factor variable out of LOW. Be careful to make sure that normal birthweight bwt > 2500 is used as the reference category!

```
> birth$low.factor <- factor(birth$low,
+ levels=c("bwt > 2500","bwt <= 2500"))
> glm(low.factor ~ smk, data=birth, family="binomial")
Call: glm(formula = low.factor ~ smk, family = "binomial", data = birth)
Coefficients:
(Intercept) smksmoker
    -1.0871 0.7041
Degrees of Freedom: 188 Total (i.e. Null); 187 Residual
Null Deviance: 234.7
Residual Deviance: 229.8 AIC: 233.8
```


Use the summary () function for more output

```
> fit <- glm(low.factor ~ smk, data=birth, family="binomial")
> summary(fit)
Call:
glm(formula = low.factor ~ smk, family = "binomial", data = birth)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
\(\mathbf{- 1 . 0 1 9 7}\) & -0.7623 & -0.7623 & 1.3438 & 1.6599
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
lrrrept) 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 229.80 on 187 degrees of freedom
AIC: 233.8
Number of Fisher Scoring iterations: 4
```

- The model: $\log ($ Odds $)=\beta_{0}+\beta_{1} \cdot$ SMK,
- The first column gives the estimates of the regression coefficients, $\hat{\beta}_{0}=-1.087$ and $\hat{\beta}_{1}=0.704$,
- The second column gives their standard errors, $\widehat{\mathrm{SE}}\left(\hat{\beta}_{0}\right)=0.215$ and $\widehat{\mathrm{SE}}\left(\hat{\beta}_{1}\right)=0.320$,
- The odds ratio can also be computed from $\hat{\beta}_{1}$ (and the Cls):

$$
\widehat{\mathrm{OR}}=e^{\hat{\beta}_{1}}=e^{0.704}=2.02
$$

(and the same for the lower and upper bound of the $95 \% \mathrm{Cl}$).

For the odds ratio and its confidence interval, we exponentiate the output

- Odds ratios:

```
> exp(coef(fit))
(Intercept) smksmoker
    0.3372093 2.0219436
```

- 95% confidence intervals of the odds ratios:

```
> exp(confint(fit))
```

Waiting for profiling to be done...
2.5 \% 97.5 \%
(Intercept) 0.21777090 .5070199
smksmoker 1.08187243 .8005817

Results for SMK:
$\widehat{\mathrm{OR}}=2.02,95 \% \mathrm{CI}=(1.08,3.80), \mathrm{p}$-value $=0.028$

Additional explanatory variables

- Want to incorporate age into the regression model,
- The new model:

$$
\log \frac{p}{1-p}=\beta_{0}+\beta_{1} \cdot \mathrm{SMK}+\beta_{2} \cdot \mathrm{AGE}
$$

- Now OR $=e^{\beta_{1}}$ describes the effect of smoking on the risk of low birth weight, when adjusted for age
- Comparing two women with the same age, one is smoking and the other is not. The odds for the smoker is $e^{\beta_{1}}$ times the odds for the non-smoker.

R output

```
> fit <- glm(low.factor ~ smk + age, data=birth, family="binomial")
> summary(fit)
Call:
glm(formula = low.factor ~ smk + age, family = "binomial", data = birth)
Deviance Residuals:
    Min 1Q Median 3Q Max
-1.1589 -0.8668 -0.7470 1.2821 1.7925
Coefficients:
    Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.06091 0.75732 0.080 0.9359
smksmoker 0.69185 0.32181 2.150 0.0316 *
age -0.04978 0.03197 -1.557 0.1195
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' }
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 227.28 on 186 degrees of freedom
AIC: 233.28
Number of Fisher Scoring iterations: 4
```


R output

```
> exp(coef(fit))
(Intercept) smksmoker age
    1.0627985 1.9974047 0.9514394
> exp(confint(fit))
Waiting for profiling to be done...
        2.5 % 97.5 %
(Intercept) 0.2426549 4.780114
smksmoker 1.0641120 3.770397
age 0.8918117 1.011394
```

- Note that OR for smoker vs non-smokers does not change much when we take age into account (from 2.022 to 1.997),
- Interpretation of β_{2} : Increasing age by 1 year corresponds to multiplying the odds with the factor $e^{\hat{\beta}_{2}}=0.951$,
- Age does not seem to have a significant effect, $p=0.119$.

OR for an increase in AGE by 5 years

- Often we are interested in estimating the change in the outcome for more than 1 year, so for example for $c=5$ years.
- Then we have: $\widehat{\mathrm{OR}}=e^{c \cdot \hat{\beta}_{i}}$, and the $95 \% \mathrm{Cl}$ is estimated as:

$$
\left(\exp \left(c \cdot \hat{\beta}_{i}-1.96 \cdot c \cdot \widehat{\mathrm{SE}}\left(\hat{\beta}_{i}\right)\right), \exp \left(c \cdot \hat{\beta}_{i}+1.96 \cdot c \cdot \widehat{\mathrm{SE}}\left(\hat{\beta}_{i}\right)\right)\right)
$$

```
> exp(5 * coef(fit)["age"])
    age
0.7796608
> exp(5 * confint(fit)["age",])
Waiting for profiling to be done...
    2.5 % 97.5 %
0.5641125 1.0582811
```

Results for increase in AGE by 5 years:
$\widehat{\mathrm{OR}}=0.78,95 \% \mathrm{CI}=(0.56,1.06), \mathrm{p}$-value $=0.119$
Note: The p-value is the same as for increase by 1 year. The 95% Cl of the OR includes 1, confirming no significance at the 5% level.

Categorical variables with more than two levels

- Are included in the analysis with dummy variables
- Construct two dummy-variables to include ethnicity

ETH	Eth(1)	Eth(2)
White	0	0
Black	1	0
Other	0	1

- A simple univariable model including only ethnicity is then:

$$
\log \frac{p}{1-p}=\beta_{0}+\beta_{1} \cdot \operatorname{Eth}(1)+\beta_{2} \cdot \operatorname{Eth}(2)
$$

- A more complicated multivariable model:
$\log \frac{p}{1-p}=\beta_{0}+\beta_{1} \cdot \mathrm{SMK}+\beta_{2} \cdot \mathrm{AGE}+\beta_{3} \cdot \operatorname{Eth}(1)+\beta_{4} \cdot \operatorname{Eth}(2)$

Dummy variables in R

- When using a variable with more than 2 categories, we need to decide which category should be the reference.
- Here, we use "white", because it is the largest.

```
> table(birth$eth) #"white" is the largest category. Use it as reference.
black other white
    26 67 96
> birth$eth.factor <- factor(birth$eth, levels=c("white","black","other"))
```


Dummy variables in R

- See R output on the next slides.
- ETH becomes statistically significant in the model with AGE and SMK ($p=0.0193$)
- The adjusted odds ratios are $\widehat{\mathrm{OR}}=2.75$ for black vs white and $\widehat{\mathrm{OR}}=2.88$ for other vs white

```
> fit <- glm(low.factor ~ smk + age + eth.factor,
+ data=birth, family="binomial")
> summary(fit)
Call:
glm(formula = low.factor ~ smk + age + eth.factor, family = "binomial",
    data = birth)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.4211 & -0.9171 & -0.5687 & 1.3687 & 2.0707
\end{tabular}
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.00755 0.86166 -1.169 0.24228
smksmoker 1.10055 0.37195 2.959 0.00309 **
age -0.03488 0.03340
eth.factorblack 1.01141 0.49342 2.050 0.04039 *
eth.factorother 1.05673 0.40596 2.603 0.00924 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
> exp(coef(fit))
    (Intercept) smksmoker age eth.factorblack eth.factorother
        0.3651110 3.0058203 0.9657186 2.7494834 2.8769483
> exp(confint(fit))
Waiting for profiling to be done...
                    2.5 % 97.5 %
(Intercept) 0.06601379 1.967972
smksmoker 1.47208358 6.378576
age 0.90303360 1.029955
eth.factorblack 1.03958814 7.308152
eth.factorother 1.31818618 6.531492
```


ETH is a confounding variable

- $\log ($ Odds $)=\beta_{0}+\beta_{1} \cdot \mathrm{SMK}+\beta_{2} \cdot \mathrm{AGE}$

```
> exp(coef(fit))
(Intercept) smksmoker age
    1.0627985 1.9974047 0.9514394
> exp(confint(fit))
Waiting for profiling to be done...
        2.5 % 97.5 %
(Intercept) 0.2426549 4.780114
smksmoker 1.0641120 3.770397
age 0.8918117 1.011394
```

- the age-adjusted OR for SMK is 1.997...
$-\log ($ Odds $)=\beta_{0}+\beta_{1} \cdot \mathbf{S M K}+\beta_{2} \cdot \operatorname{AGE}+\beta_{3} \cdot \operatorname{Eth}(1)+\beta_{4} \cdot \operatorname{Eth}(2)$

```
> exp(coef(fit))
    (Intercept) smksmoker
        0.3651110 3.0058203
                            age eth.factorblack eth.factorother
        0.9657186
    2.7494834
    2.8769483
> exp(confint(fit))
Waiting for profiling to be done...
            2.5 % 97.5 %
(Intercept) 0.06601379 1.967972
smksmoker 1.47208358 6.378576
age 0.90303360 1.029955
eth.factorblack 1.03958814 7.308152
eth.factorother 1.31818618 6.531492
```

- ... but when we also adjust for ethnicity, it grows to 3.006 !
- This phenomenon is called effect modification by a confounder.

Confounding

- Ethnicity is likely to sum up other socio-economic factors, which are here not accounted for,
- and it can therefore lead to other smoking habits, but also different birth weight.
- We should adjust for this by including ethnicity in the regression model (mostly as a proxy for other socio-economic factors).

Example 2: Confounding variable

- Folate supplementation and twin pregnancies (Vollset, Gjessing, et al, Epidemiology 2008),

	Twin birth	Single birth
Folate	329	10748
No folate	2825	162140

- Odds ratio:

$$
\mathrm{OR}=\frac{329 \times 162140}{10748 \times 2825}
$$

- 95\% Confidence interval: $(1.57,1.97)$

IVF treatment is a confounder

$$
\frac{1}{1-p}=\beta_{0}+\beta_{1} \cdot \text { Folate }
$$

gives $\mathrm{OR}=1.76$,

$$
\begin{aligned}
& \frac{1}{1-p}=\beta_{0}+\beta_{1} \cdot \text { Folate }+\beta_{2} \cdot \text { Age }+\beta_{4} \cdot \text { Parity } \\
& \text { gives } \mathrm{OR}=1.59,95 \% \mathrm{Cl}(1.41,1.78) \\
& \qquad \frac{1}{1-p}=\beta_{0}+\beta_{1} \cdot \text { Folate }+\beta_{2} \cdot \text { Age }+\beta_{4} \cdot \text { Parity }+\beta_{5} \cdot I V F \\
& \text { gives } \mathrm{OR}=1.04,95 \% \mathrm{Cl}(.91,1.18) . \text { (The effect disappears!) }
\end{aligned}
$$

Effect modification and model misspecification

- Effect modification when adding a third variable changes the effect of exposure.
- Confounding variables and selection effects:
- Confounding variables yield spurious effects if you omit them.
- But some variables (colliders) yield spurious effects if you include them.
- This makes it difficult/impossible to do automatic model selection procedures for estimating causal effects.
- Subject matter knowledge is crucial.

COVID-19 and smoking: example of a spurious effect

"Just overheard a woman buying cigarettes at the supermarket. She explained to the cashier that she read that smoking prevents you from a COVID-19 infection." (\#epitwitter)

- In some studies, smoking seems to have a weak protective effect against COVID-19 infection/death.
- This could be explained in several ways:

1. missing confounder (e.g. age, high-exposure occupation, ...)
2. inclusion of a collider (e.g. chronic respiratory disease)
3. selection bias (see the lecture on epidemiological designs and concepts)

COVID-19 and smoking: example of a spurious effect

medRxiv
 Cold Spring Harbor Spring Harbor Laborator Laboratory BMJ Yale

the preprint server for health sciences

OpenSAFELY: factors associated with COVID- I9-related hospital death in the linked electronic health records of 17 million adult NHS patients

The OpenSAFELY Collaborative, © Elizabeth Williamson, © Alex J Walker, © Krishnan Bhaskaran,
© Seb Bacon, Chris Bates, © Caroline E Morton, © Helen J Curtis, Amir Mehrkar, David Evans, Peter Inglesby, Jonathan Cockburn, Helen I McDonald, © Brian MacKenna, © Laurie Tomlinson,
© Ian J Douglas, © Christopher T Rentsch, © Rohini Mathur, (©) Angel Wong, © Richard Grieve,
© David Harrison, Harriet Forbes, (©) Anna Schultze, © Richard Croker, John Parry, Frank Hester,
Sam Harper, (-) Raf Perera, Stephen Evans, (i) Liam Smeeth, Ben Goldacre
doi: https://doi.org/I0.| | $01 / 2020.05 .06 .20092999$
"[...] weak evidence of a slightly lower risk in current smokers (fully adjusted HRs $0.88, \mathrm{Cl} 0.79-0.99$). In post-hoc analyses we added individual covariates to the model with age, sex and smoking to explore this further: the change in HR appeared to be largely driven by adjustment for chronic respiratory disease [...] and deprivation [...]."

COVID-19 and smoking: example of a spurious effect

COVID-19 and smoking: example of a spurious effect

Causal inference is difficult

SOUNDS LIKE THE CLASS HELPED.

Summary

Key words

- Dichotomous (binary) response variable
- Logit function
- OR, adjusted OR
- Dummy variables
- Confounders / (colliders)

