To Explain To Predict or To Describe?

ISBIS 2019 Satellite Conference August 15-16, 2019 Lanai Kijang, Kuala Lumpur, Malaysia

Today's Menu

- **1.** Definitions
- 2. Monopolies & confusion in academia & industry
- 3. Explanatory, predictive, descriptive modeling & evaluation are different
 - Why?
 - Different modeling paths
 - Explanatory vs. predictive vs. descriptive power

4. Where next?

Definitions: Explain

Explanatory modeling

theory-based, statistical testing of causal hypotheses

Explanatory power

strength of relationship in statistical model

Definitions: Predict

Predictive modeling

empirical method for predicting new observations

Predictive power

ability to accurately predict new observations

Definitions: Describe

Descriptive modeling

statistical model for approximating a distribution or relationship

Descriptive power goodness of fit, generalizable to population

Monopolies in Different Fields

Social Sciences

Describe

Statistics

Machine Learning

Predict

Social sciences & management research Domination of "Explain"



Purpose: test causal theory ("explain")

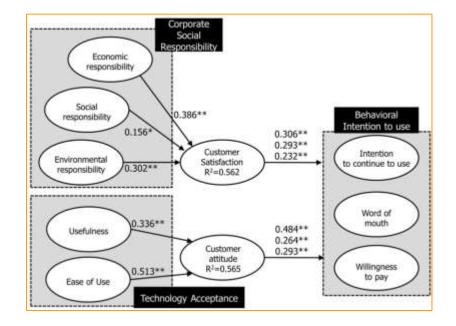
Association-based statistical models

Prediction & description nearly absent

Classic journal paper

Start with a causal theory

Generate causal hypotheses on constructs



Operationalize constructs → **measurable variables**

Fit statistical model

Statistical inference → causal conclusions

Misconception #1: The same model is best for explaining, describing, predicting

Social Sci & Mgmt: Build explanatory model and use it to "predict"

"A good explanatory model will also predict well"

"You must understand the underlying causes in order to predict"

JOURNAL ARTICLE

Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior

Paul A. Pavlou and Mendel Fygenson MIS Quarterly Vol. 30, No. 1 (Mar., 2006), pp. 115-143

"To examine the **predictive** power of the proposed model, we compare it to four models in terms of **R² adjusted**"

HEALTH PSYCHOLOGY REVIEW

Taylor & Francis

PMCID

Health Psychol Rev. 2016 Apr 2; 10(2): 148–167. Published online 2014 Sep 17. doi: <u>10.1080/17437199.2014.947547</u>

How well does the theory of planned behaviour predict alcohol consumption? A systematic review and meta-analysis

Richard Cooke, a, * Mary Dahdah, a Paul Norman, b and David P. French c

Explore this journal >

Predicting and Explaining Intentions and Behavior: How Well Are We Doing?

Stephen Sutton 🖂

View issue TOC Volume 28, Issue 15 August 1998 Pages 1317–1338

Misconception #1: The same model is best for explaining, describing, predicting

CS/eng/stat: Build a predictive model and use it to "explain"

Jou Jo Vo	User Exercise Pattern Prediction through Mobile Sensing	с« Юі	In this work, we present insights about user exerci On a Framework for the Prediction and Explanation of Changing Opinions	se pat- pants. user's
15	{georgi.kotsev, le.nguyen, ming.zeng, joy.zhang}@sv.cmu.edu	ne n t ytic	• Insights about users' exercise patterns: we	er the 2. Our : intro-
	20 49 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	plic	"our model is able to provide both predictions of how the	isers.
		hey Froi ate	2009 IEEE Prediction a Wentropose an Syndering Mapproach Cybernetidict the tendency of users' future number of exper week and compare the performance of discourse distance and classificant	ercises
	highlight the top factors influencing employees' interest in leaving.			

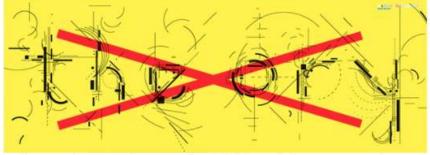
Misconception #2: explain > predict or predict > explain

Emanuel Parzen, Comment on "Statistical Modeling: The Two Cultures" *Statistical Science* 2001

The two goals in analyzing data which Leo calls prediction and information I prefer to describe as "management" and "science." Management seeks *profit*, practical answers (predictions) useful for decision making in the short run. Science seeks *truth*, fundamental knowledge about nature which provides understanding and control in the long run. HRIS ANDERSON SCIENCE 06.23.08 12:00 PM

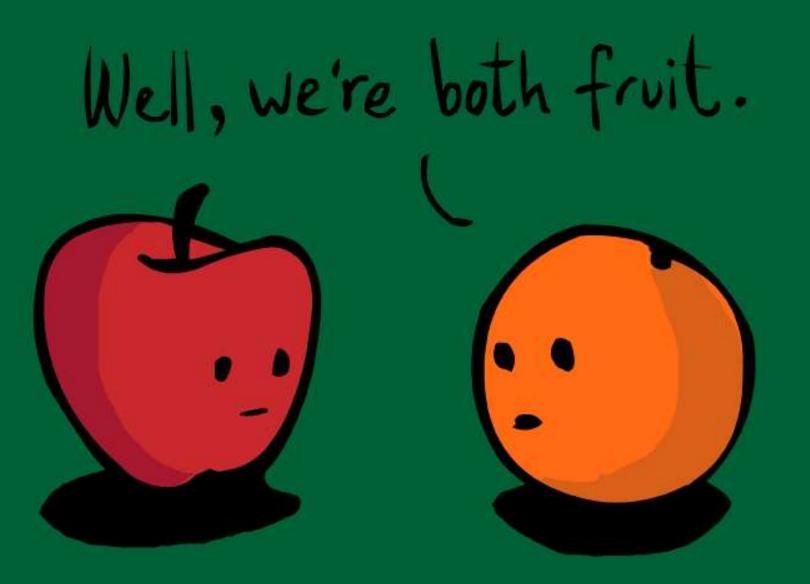
THE END OF THEORY: THE DATA DELUGE MAKES THE SCIENTIFIC METHOD OBSOLETE

*Chris Anderson is the editor in chief of Wired



* Illustration: Marian Bantjes * **"All models are wrong**, but some are useful."

"Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanistic explanation at all"



Philosophy of Science

"Explanation and prediction have the same logical structure"

Hempel & Oppenheim, 1948

"It becomes pertinent to investigate the possibilities of predictive procedures autonomous of those used for explanation" Helmer & Rescher, 1959

"Theories of social and human behavior address themselves to two distinct goals of science: (1) prediction and (2) understanding" Dubin, *Theory Building*, 1969

Why statistical

explanatory modeling

predictive modeling

descriptive modeling

are different

Different Scientific Goals Different *generalization*

Explanatory Model:

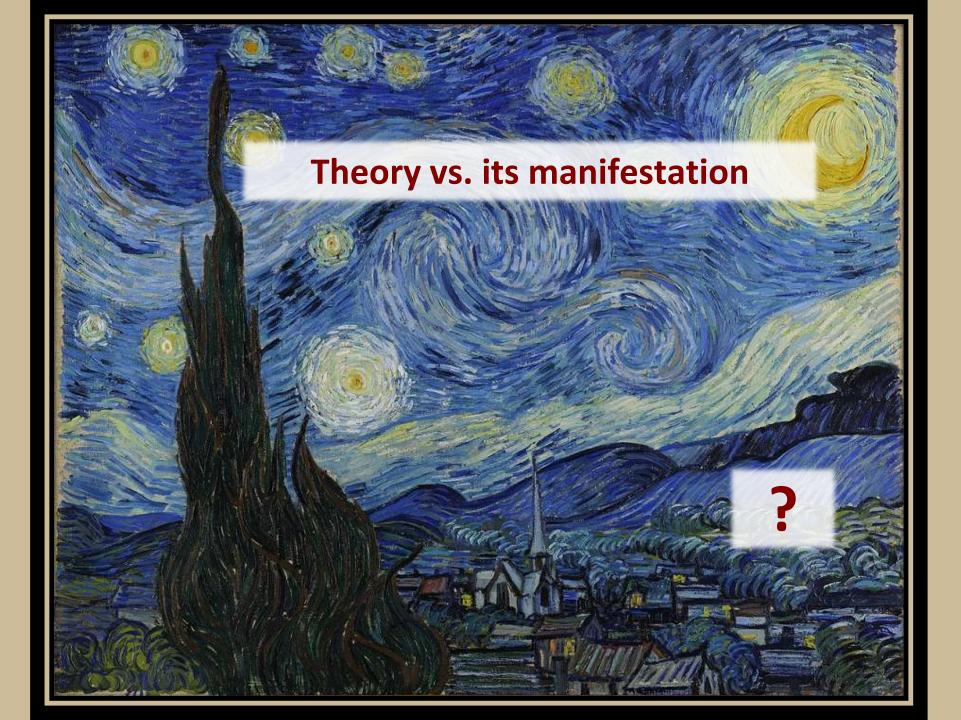
test/quantify causal effect between *constructs* for "average" unit in population

Descriptive Model:

test/quantify distribution or correlation structure for *measured* "average" unit in population

Predictive Model:

predict values for new/future individual units



Notation

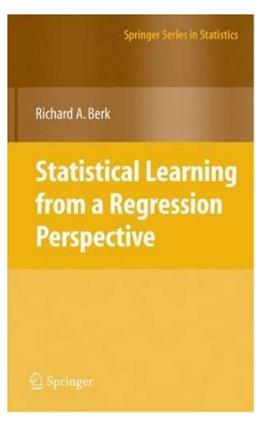
Theoretical constructs: X, Y Causal theoretical model: Y=F(X) Measurable variables: X, Y

Statistical model: *E(y)=f(X)*

Breiman, "Statistical Modeling: The Two Cultures", Stat Science, 2001

5 aspects to consider

Theory – Data **Causation – Association Retrospective – Prospective Bias – Variance** Average Unit – Individual Unit



"The goal of finding models that are predictively accurate differs from the goal of finding models that are true."

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

🙆 Springer

$\begin{aligned} \operatorname{Err}(x_0) &= E[(Y - \hat{f}(x_0))^2 | X = x_0] \\ &= \sigma_{\varepsilon}^2 + [\operatorname{E} \hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - \operatorname{E} \hat{f}(x_0)]^2 \\ &= \sigma_{\varepsilon}^2 + \operatorname{Bias}^2(\hat{f}(x_0)) + \operatorname{Var}(\hat{f}(x_0)) \\ &= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^2 + \operatorname{Variance.} \end{aligned}$

But there's more than bias-variance

Example: Regression Model for Explanation

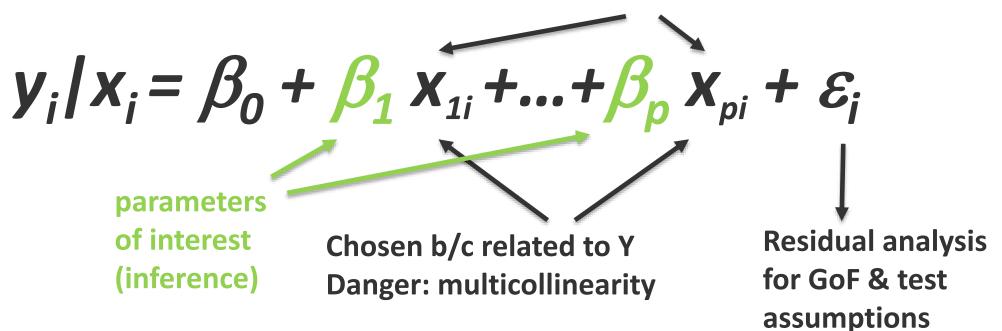
Underlying model: X →Y



Example: Regression Model for Description

All variables treated/interpreted as observable

Remain in model only if statistically significant



Example: Regression Model for Prediction

All variables treated as observable, available at time of prediction

Retain only if improve outof-sample prediction

$$y_{i} | x_{i} = \beta_{0} + \beta_{1} x_{1i} + \dots + \beta_{p} x_{pi} + \mathcal{E}_{i}$$
Quantity of
interest for
new i's
(prediction)
Chosen b/c possibly
correlated with Y
Danger: over-fitting

Point #1

best explanatory model

best predictive model

best descriptive model

Predict ≠ **Explain**

"we tried to benefit from an extensive set of attributes describing each of the movies in the dataset. Those attributes certainly carry a significant signal and can **explain some of the user behavior**. However... they could not help **at all** for improving the [predictive] accuracy."

Bell et al., 2008

Predict ≠ **Describe**

Election Polls

"There is a subtle, but important, difference between reflecting current public sentiment and predicting the results of an election. Surveys have focused largely on the former... [as opposed to] survey based prediction models [that are] focused entirely on analysis and projection"

Kenett, Pfefferman & Steinberg (2017) "Election Polls – A Survey, A Critique, and Proposals", Annual Rev of Stat & its Applications

Variables? Methods?

Evaluation, Validation & Model Selection

Model Use & Reporting

Study design & data collection

Observational or experiment?

Primary or secondary data?

Instrument (reliability+validity vs. measurement accuracy)

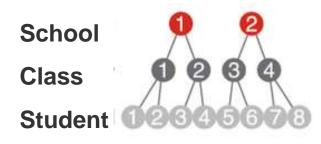
How much data?

How to sample?

Journal of Educational and Behavioral Statistics

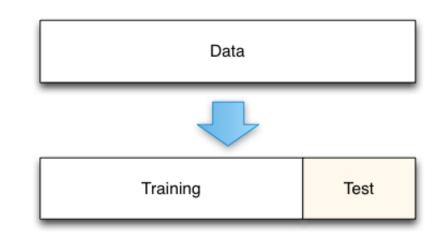
Prediction in Multilevel Models David Afshartous, Jan de Leeuw First Published June 1, 2005 | Research Article

Multilevel (nested) data



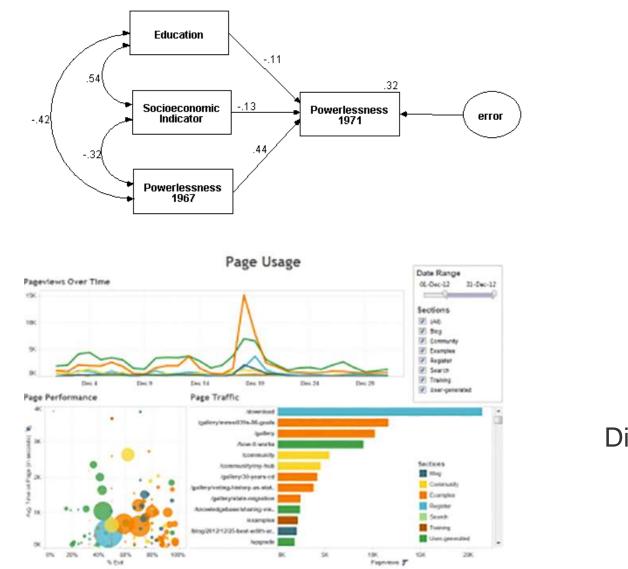
predict: increase group size
explain/describe: increase #groups

Data preprocessing



Reduced-Feature Models Saar-Tsechansky & Provost, JMLR 2007

Data exploration, viz, reduction



Factor Analysis (interpretable) **PCA Dimension Reduction** (fast, small)

Which variables?

causal role vs. associations

endogeneity ex-post availability

leading, coincident, lagging indicators

multicollinearity

identifiability A, B, A*B

Methods / Models

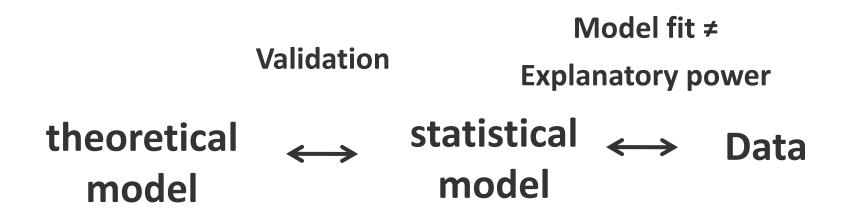
long/short regression omitted variables bias shrinkage models

bic

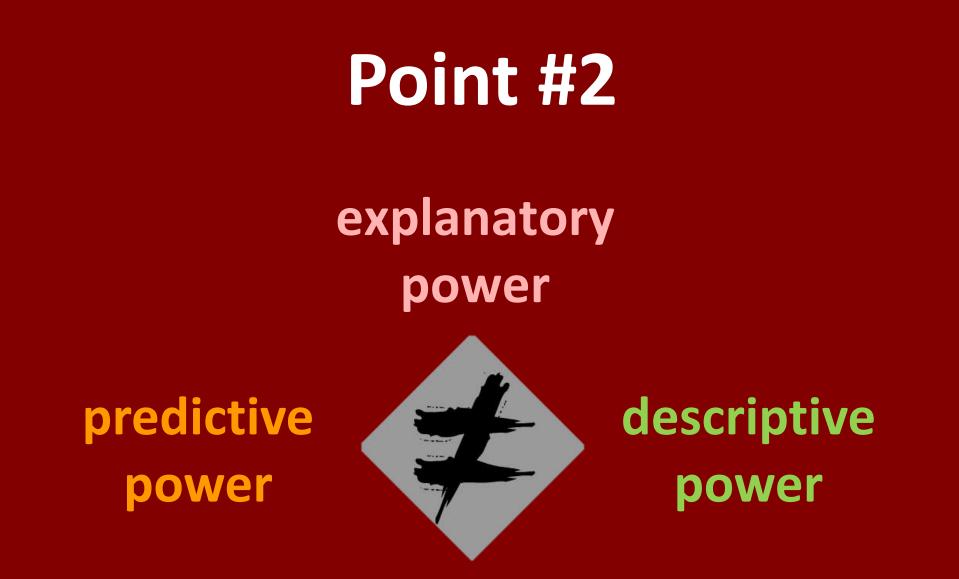
ensembles

variance

blackbox / interpretable mapping to theory



Evaluation, Validation & Model Selection



Cannot infer one from the others

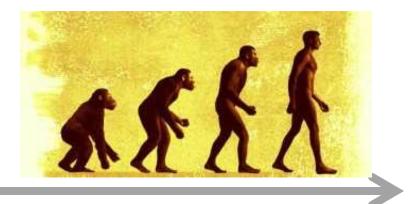
p-values
overall, specificprediction accuracyR2Performance
Metricscosts

goodness-of-fit training vs holdout

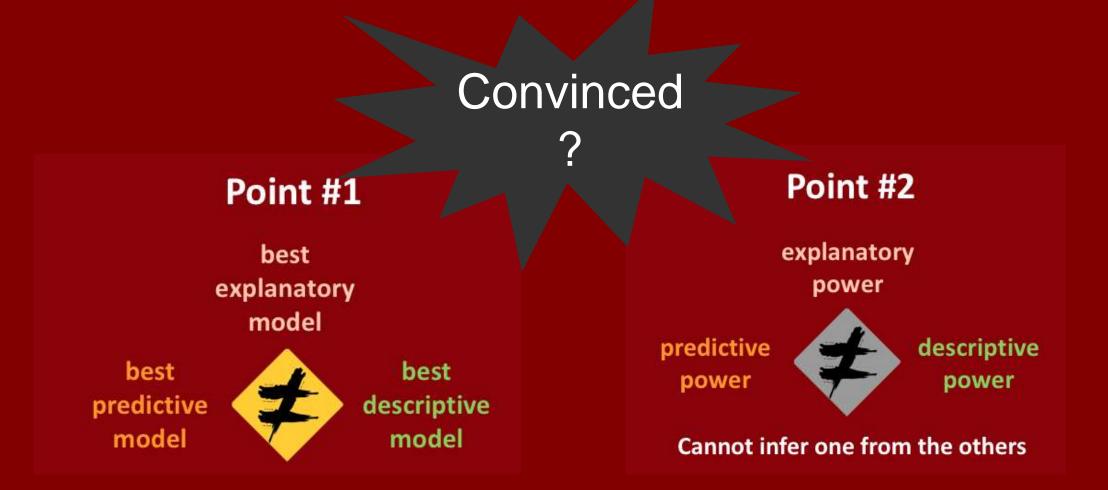
type I,II errors over-fitting

interpretation

Predictive Power



Explanatory Power



Currently in Academia

(social sciences, management)

- Theory-based explanatory modeling
- Prediction underappreciated
- Distinction blurred
- Unfamiliar with predictive modeling getting better

How/why use prediction

(predictive models + evaluation)

for scientific research

beyond project-specific

solution/utility/profit?

The predictive power of an explanatory/descriptive model has important scientific value

relevance, reality check, predictability

Prediction for Scientific Research

- Generate new theory
- Develop measures
- Compare theories
- Improve theory
- Assess relevance
- Evaluate predictability

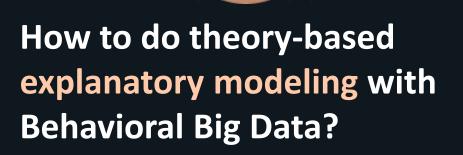
Shmueli & Koppius, "Predictive Analytics in Information Systems Research" *MIS Quarterly*, 2011

Currently in Industry (and machine learning)

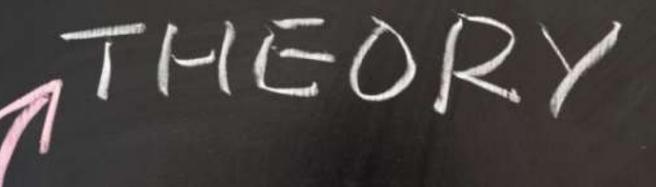
- Data-driven predictive modeling
- Prediction over-appreciated
- Distinction blurred
- A-B testing
- Unfamiliar with theory-based explanatory modeling

Implications: Short-term solutions Shallow/no understanding Ethical, social, human pitfalls

What does Target know about pregnant women?



Shmueli (2017) "Research Dilemmas With Behavioral Big Data", *Big Data*, vol 5(2), pp. 98-119



Explain + Predict + Describe

ZACTIC