Day 3 - Statistical Inference Part I

Introduction to hypothesis testing and confidence intervals
One-sample Student's test and confidence interval
Paired data, two independent samples

Valeria Vitelli Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E – Introductory Course in Statistics 10.04.2024 Statistical Inference, part I: Overview

Schedule for today: Lectures in flipped classroom style

- 12:45 13:30 Introductory lecture
- 13:30 14:15 Self study session*
- 14:15 15:00 Group work session*
- 15:00 15:30 Closing session (Wrap-up / Q&A)

[*you should take a break at some point in these two stretches]

Tomorrow morning: Lab in flipped classroom style

- One-sample t-Student test and confidence interval with ${\bf R}$
- Two-sample t-Student test and confidence interval with R

Statistical Inference, part I: Introductory Lecture

- Shortly explain the key concepts for today
- Make clear what to focus on
- Explain how to use the **learning material** in the **Self study session**
- Give guiding questions for the Group work session

Statistical Inference, part I: Introductory Lecture

Key concepts

1 Properties of the Sample Mean

- Recap from Day 1
- Standard deviation vs. standard error

2 Confidence Intervals (CIs)

- The Student t-distribution
- Confidence interval for the mean

3 Testing an hypothesis

- One-sample t-test
- Paired data
- Two sample t-test

Key concept 1. Properties of the Sample Mean

Recap from Day 1

How to describe the data distribution?

- central measures (mean, median, mode)
- measures of variation (range / IQR, empirical variance / standard deviation)

Some facts:

- which measure to use depends on the situation
- the sample mean $ar{X}$ is an estimator for the **population** mean μ
- the empirical standard deviation s is an estimator for the population standard deviation σ
- the sample mean \bar{X} is a normally distributed random variable, with mean μ and standard deviation σ/\sqrt{n} , the latter is also called standard error

Key concept 1. Properties of the Sample Mean

Recap from Day 1

- Inferential Statistics is about using information from a sample (data set) to make inference about the population it originates from
- Therefore, the **sample** is of interest for what it tells the investigator about the **population** which it represents

Key concept 1. Properties of the Sample Mean

standard deviation vs. standard error

- every sample will give a different estimate of \bar{X} due to sample variation
- the standard error of the sample mean reflects this variation, as it measures how precisely the population mean μ is estimated by the sample mean \bar{X}
- **by construction,** the standard error decreases when the sample size *n* increases (also natural / intuitive!)

Key concept 1. standard deviation vs. standard error Example 4.4 at page 39-41 of K&S \rightarrow simulated in R!

Key concept 2. Confidence Intervals (CIs)

Confidence intervals for the mean

- The sample mean \bar{X} is an **estimate** of the true mean μ in the whole population
- We seek a method to quantify how representative our estimate is
- We are able to construct a **range of likely values**, called a **confidence interval** (CI), for the (unknown) population mean based on the sample mean and its standard error

Key concept 2. Confidence Intervals (CIs)

95%-confidence interval

- A method that we can apply to the sample to produce an interval
- The probability that this method will produce an interval that contains the true value is 95%
- We will refer to such interval as 95% confidence interval

common misunderstanding

this is not the same as saying that our estimated interval contains the true value with 95% probability!

Key concept 2. Confidence Intervals (CIs)

Simulation in R: Confidence intervals for the **mean serum albumin** constructed from 100 random samples of size n = 25. Vertical line at the population mean μ ; red Cls do not cover μ

95% Confidence Intervals: the method, exemplified

Key concept 3. Testing an hypothesis

Hypothesis testing in general

- State your **null hypothesis** *H*₀: **aim** of the test is to check whether the data provide **sufficient evidence to reject it**
- Derive the test statistic, who has a certain distribution
- **Take a decision:** accept/reject, or calculate the **p-value** (There is a relation between the two strategies: if the p-value is below a certain level you can reject *H*₀)

P-value: definition

The probability that the observed result, or a result more extreme, is true, given H_0 is true.

P-value

Type I and Type II errors

HYPOTHESIS TESTING		Reality		
001	COMES	The Null Hypothesis Is True	The Alternative Hypothesis is True	
R e a r c h	The Null Hypothesis Is True	Accurate $1 - \alpha$	Type II Error β	
	The Alternative Hypothesis is True	Type I Error α \ddots	Accurate 1 - β	

- Type I error (false positive): P(H₀ rejected | H₀ true) = α Also called level of the test, as it defines the test itself (α is thus determined in advance, example value 5%)
- Type II error (false negative): $P(H_0 \text{ not rejected } | H_0 \text{ false}) = \beta$ Influenced by sample size; it is equal to 1 - power

Test procedure

- 1 Formulate the test (null hypothesis & alternative hypothesis)
- 2 Choose an appropriate test and level α
- **3** Calculate the test-statistic
 - Compare the test-statistic with the α-threshold, OR
 - Calculate the p-value, and compare it with α
- Decide whether the null hypothesis is to be rejected or not: reject if
 - the test-statistic is larger than the α-threshold, OR
 - the p-value is smaller than α
- **5** Formulate the conclusion

Correspondence between CI and test

If the 95%-Cl for μ does not include $\mu_0,$ then the corresponding test can be rejected at the 5% level

Summary

Key terms and concepts

- Recap from Day 1 (concepts from Descriptive Statistics)
- Inferential Statistics (as opposed to descriptive statistics)
- Population and sample, properties of the sample mean
- Standard deviation vs Standard error of the mean
- Confidence intervals: general idea, concept of coverage
 - CI for the mean when σ is known
 - \blacktriangleright CI for the mean when σ is unknown, the Student t-distribution
 - Non-normality, small sample sizes
 - ▶ CI for the mean difference $\mu_1 \mu_0$ of two independent samples
- Testing an hypothesis: general idea, concept of p-value
 - one-sample t-test for the population mean
 - test for paired data
 - ▶ two-independent-samples t-test for the mean difference $\mu_1 \mu_0$

Self study session – Tasks

- **1** Deepen your understanding of each key concept from the previous slides by reading the corresponding longer slides:
 - day3_key_concept_1.pdf
 - day3_key_concept_2.pdf
 - day3_key_concept_3.pdf
- **2** Verify your learning outcome:
 - Review the Summary (slide 16, "Key terms and concepts") in this presentation, and make sure you understand all terms
 - IF you feel you are still not familiar with any terms and concepts from the summary slides, then
 - use the provided Learning Material (next slide) to read more
 - ASK ME!! (I will be in class)
- OPREPARE for the group work session by keeping in mind the "Guiding questions for the group work session" (slide 19) when reviewing the material

Self study session

Learning Material

- Properties of the mean: Aalen chapter 8.1, Kirkwood and Sterne (K&S) chapter 4
- **Cls for the mean**: Aalen chapter 8.3, K&S chapter 6 (Student t-distribution: Aalen chapter 8.2)
- One sample t-test: Aalen chapter 8.4
- Paired data: Aalen chapter 8.5, K&S chapter 7
- Two sample t-test: Aalen chapter 8.6, K&S chapter 7
- **General discussions** on the use of p-values and confidence intervals for interpreting results: K&S chapter 8

Group work session

Task

In your group (which should include 4-6 participants), jointly revise the following guiding questions and provide an answer

Guiding questions

- What is the property of the sample mean that allows us to build Confidence Intervals and Hypothesis Tests?
- Which is the relationship between a Confidence Interval and a Hypothesis Test, and their respective purpose?
- 3 The size of a p-value depends on the sample size n. How can this affect the interpretation of the p-value itself, and therefore of the analysis results?