Properties of the Sample Mean

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics
10.04.2024

Central Measures

Mean

- The (arithmetic) sample mean \bar{X} is the sum of all observations divided by the number of observations:

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

where n is the sample size

- It is an estimate of the population mean μ

Median

- Another central measure is the sample median \tilde{X}. This is the middle observation when all observations are arranged in increasing order:

$$
\tilde{X}= \begin{cases}Y_{(n+1) / 2} & \text { if } n \text { is odd } \\ \frac{1}{2}\left(Y_{n / 2}+Y_{n / 2+1}\right) & \text { if } n \text { is even }\end{cases}
$$

where $Y_{(1)}, \ldots, Y_{(n)}$ are the ascending ordered observations X_{1}, \ldots, X_{n}, and n is the sample size

Mode

- The mode is the most frequently occuring value in the sample

Example: 4.1 in Kirkwood \& Sterne

We have measurements of the plasma volumes (in litres) of eight healthy adult males.

Subject	1	2	3	4	5	6	7	8
Plasma volume	2.75	2.86	3.37	2.76	2.62	3.49	3.05	3.12

We find that the sample mean is given by

$$
\bar{X}=\frac{1}{8}(2.75+2.86+\ldots+3.12)=3.00
$$

and the sample median is given by

$$
\tilde{X}=\frac{1}{2}(2.86+3.05)=2.96
$$

Since all the values are different, there is no estimate of the mode

Choice of measure

- The choice of measure depends on the data distribution

Central measure	Data distribution
sample mean	symmetric, normal-like
median	outliers, skewed distribution
mode	seldom used

- The mean, median and mode are equal when the distribution is symmetrical and unimodal

Measures of Variation

Measures of variation are used to indicate the spread of the values in a distribution

Figur 8.1 Den lave kurven viser en normalfordeling med forventning 3 og standardavvik 1. Hvis en tar 16 observasjoner fra denne og beregner gjennomsnittet, vil det ha en normalfordeling med forventning 3 og standardavvik $1 / 4$. Dette er den høye tynne fordelingen

Range and interquartile range

- The range is the difference between the largest and smallest values in the sample:

$$
\mathrm{R}=Y_{n}-Y_{1}
$$

where $Y_{1}=\min (X)$ and $Y_{n}=\max (X)$

- The interquartile range is the difference between the middle two quartiles:

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

where Q_{1} and Q_{3} are the lower and upper quartiles respectively. It indicates the spread of the middle 50% of the distribution

Variance

- The population variance σ^{2} may be estimated by the empirical variance s^{2}. It is found by averaging the squares of the deviations of the observations from the sample mean

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

where $(n-1)$ is called the number of degrees of freedom (d.f.) of the variance

Standard deviation

- The population standard deviation σ is found as the square root of the variance. It may be estimated by the empirical standard deviation s, which is the square root of the empirical variance:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}=\sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2} / n}{n-1}}
$$

- When the underlying population corresponds to a normal distribution we have that:
- about 70% of the observations lie within one standard deviation of their mean
$>$ about 95% of the observations lie within two standard deviations of their mean

Example: 4.2 in Kirkwood \& Sterne

We want to calculate the standard deviation of the eight plasma volume measurements of Example 4.1 in Kirkwood \& Sterne.

	Plasma volume X	Deviation from the mean $X-\bar{X}$	Squared deviation from the mean $(X-\bar{X})^{2}$
2.75	-0.25	Squared observation	
2.86	-0.14	0.0625	X^{2}
3.37	0.37	0.0196	7.5625
2.76	-0.24	0.1369	8.1796
2.62	-0.38	0.0576	11.3569
3.49	0.49	0.1444	7.6176
Totals	0.05	0.2401	6.8644
	2.05	0.12	0.0025

The sum of squared deviations from the sample mean is
$\sum_{i}\left(X_{i}-\bar{X}\right)^{2}=0.6780$, and we have $n-1=7$ degrees of freedom.
The empirical standard deviation is given by $s=\sqrt{\frac{0.6780}{7}}=0.31$

Properties of the Sample Mean \bar{X}

\bar{X} also has a distribution!

- mean equal to the population mean μ
- standard deviation, called the standard error, equal to σ / \sqrt{n}
- The central limit theorem says that the distribution is a normal distribution, whether or not the underlying population is normal (when the sample size is not too small)

Standard Error of the Mean

The estimated standard error of the sample mean \bar{X} is given by

$$
\widehat{\text { s.e. }}=s_{\bar{X}}=\frac{s}{\sqrt{n}},
$$

where s is the empirical standard deviation, and n is the sample size

Example: 4.3 in Kirkwood \& Sterne

Once again, we return to the eight plasma volumes of Example 4.1 and Example 4.2 in Kirkwood \& Sterne (2003). We found that the sample mean is 3.00 litres, and the empirical standard deviation is 0.31 litres. The estimated standard error of the sample mean (in litres) is given by

$$
\widehat{\text { s.e. }}=s_{\bar{X}}=\frac{0.31}{\sqrt{8}}=0.11
$$

Standard deviation vs. standard error
Remember that

- the standard deviation measures the amount of variability in the population
- the standard error of the sample mean measures the amount of variability in the sample mean

Example: 8.2 in Aalen et al.
We have a sample of 4 independent measurements of cholesterol from a population with mean $\mu=6.5 \mathrm{mmol} / \mathrm{I}$ and standard deviation $\sigma=0.5 \mathrm{mmol} / \mathrm{l}$

The expected value in the sample equals $6.5 \mathrm{mmol} / \mathrm{l}$, and the standard error of the sample mean is $\sigma / \sqrt{n}=0.5 / \sqrt{4}=0.25$

Summary: properties of the sample mean

- The sample mean: $\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
- Expectation of the sample mean: $E(\bar{X})=\mu$
- Variance of the sample mean: $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$
- Standard deviation of the sample mean = standard error: $S D(\bar{X})=\frac{\sigma}{\sqrt{n}}$
- The distribution of the sample mean: $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ (the central limit theorem)

