# Properties of the Sample Mean

Valeria Vitelli Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E – Introductory Course in Statistics 10.04.2024

# Central Measures

#### Mean

• The (arithmetic) sample mean  $\bar{X}$  is the sum of all observations divided by the number of observations:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n},$$

where n is the sample size

• It is an estimate of the **population mean**  $\mu$ 

#### Median

• Another central measure is the **sample median**  $\tilde{X}$ . This is the *middle observation* when all observations are arranged in increasing order:

$$\tilde{X} = \begin{cases} Y_{(n+1)/2} & \text{if } n \text{ is odd} \\ \frac{1}{2}(Y_{n/2} + Y_{n/2+1}) & \text{if } n \text{ is even} \end{cases}$$

where  $Y_{(1)}, \ldots, Y_{(n)}$  are the ascending ordered observations  $X_1, \ldots, X_n$ , and n is the sample size

Mode

• The mode is the most frequently occuring value in the sample

#### Example: 4.1 in Kirkwood & Sterne

We have measurements of the plasma volumes (in litres) of eight healthy adult males.

| Subject       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|---------------|------|------|------|------|------|------|------|------|
| Plasma volume | 2.75 | 2.86 | 3.37 | 2.76 | 2.62 | 3.49 | 3.05 | 3.12 |

We find that the sample mean is given by

$$\bar{X} = \frac{1}{8}(2.75 + 2.86 + \ldots + 3.12) = 3.00,$$

and the sample median is given by

$$ilde{X} = rac{1}{2}(2.86 + 3.05) = 2.96$$

Since all the values are different, there is no estimate of the mode

#### Choice of measure

• The choice of measure depends on the data distribution

| Central measure | Data distribution             |  |  |
|-----------------|-------------------------------|--|--|
| sample mean     | symmetric, normal-like        |  |  |
| median          | outliers, skewed distribution |  |  |
| mode            | seldom used                   |  |  |

• The mean, median and mode are equal when the distribution is *symmetrical* and *unimodal* 

## Measures of Variation

Measures of variation are used to indicate the  $\ensuremath{\textbf{spread}}$  of the values in a distribution



**Figur 8.1** Den lave kurven viser en normalfordeling med forventning 3 og standardavvik 1. Hvis en tar 16 observasjoner fra denne og beregner gjennomsnittet, vil det ha en normalfordeling med forventning 3 og standardavvik 1/4. Dette er den høye tynne fordelingen

#### Range and interquartile range

• The **range** is the difference between the *largest* and *smallest* values in the sample:

$$\mathsf{R}=Y_n-Y_1,$$

where  $Y_1 = \min(X)$  and  $Y_n = \max(X)$ 

• The **interquartile range** is the difference between the middle two quartiles:

$$\mathsf{IQR}=Q_3-Q_1,$$

where  $Q_1$  and  $Q_3$  are the *lower* and *upper* quartiles respectively. It indicates the spread of the middle 50% of the distribution

#### Variance

 The population variance σ<sup>2</sup> may be estimated by the empirical variance s<sup>2</sup>. It is found by averaging the squares of the deviations of the observations from the sample mean

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1},$$

where (n-1) is called the number of **degrees of freedom** (d.f.) of the variance

#### Standard deviation

 The population standard deviation σ is found as the square root of the variance. It may be estimated by the empirical standard deviation s, which is the square root of the empirical variance:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} X_i^2 - (\sum_{i=1}^{n} X_i)^2 / n}{n-1}}$$

- When the underlying population corresponds to a **normal distribution** we have that:
  - about 70% of the observations lie within one standard deviation of their mean
  - about 95% of the observations lie within *two* standard deviations of their mean

#### Example: 4.2 in Kirkwood & Sterne

# We want to calculate the standard deviation of the eight **plasma volume measurements** of Example 4.1 in Kirkwood & Sterne.

|        | Plasma volume<br>X | Deviation<br>from the mean<br>$X - \bar{X}$ | Squared deviation<br>from the mean<br>$(X - \bar{X})^2$ | Squared<br>observation<br>X <sup>2</sup> |
|--------|--------------------|---------------------------------------------|---------------------------------------------------------|------------------------------------------|
|        | 2.75               | -0.25                                       | 0.0625                                                  | 7.5625                                   |
|        | 2.86               | -0.14                                       | 0.0196                                                  | 8.1796                                   |
|        | 3.37               | 0.37                                        | 0.1369                                                  | 11.3569                                  |
|        | 2.76               | -0.24                                       | 0.0576                                                  | 7.6176                                   |
|        | 2.62               | -0.38                                       | 0.1444                                                  | 6.8644                                   |
|        | 3.49               | 0.49                                        | 0.2401                                                  | 12.1801                                  |
|        | 3.05               | 0.05                                        | 0.0025                                                  | 9.3025                                   |
|        | 3.12               | 0.12                                        | 0.0144                                                  | 9.7344                                   |
| Totals | 24.02              | 0.00                                        | 0.6780                                                  | 72.7980                                  |

The sum of squared deviations from the sample mean is  $\sum_i (X_i - \bar{X})^2 = 0.6780$ , and we have n - 1 = 7 degrees of freedom. The **empirical standard deviation** is given by  $s = \sqrt{\frac{0.6780}{7}} = 0.31$ 

# Properties of the **Sample Mean** $\bar{X}$

### $\bar{X}$ also has a distribution!

- mean equal to the population mean  $\mu$
- standard deviation, called the **standard error**, equal to  $\sigma/\sqrt{n}$
- The **central limit theorem** says that the distribution is a normal distribution, *whether or not* the underlying population is normal (when the sample size is not too small)

#### Standard Error of the Mean

The **estimated standard error** of the sample mean  $\bar{X}$  is given by

$$\widehat{\mathrm{s.e.}} = s_{\bar{X}} = \frac{s}{\sqrt{n}},$$

where s is the empirical standard deviation, and n is the sample size

#### Example: 4.3 in Kirkwood & Sterne

Once again, we return to the eight **plasma volumes** of Example 4.1 and Example 4.2 in Kirkwood & Sterne (2003). We found that the sample mean is 3.00 litres, and the empirical standard deviation is 0.31 litres. The **estimated standard error** of the sample mean (in litres) is given by

$$\widehat{\text{s.e.}} = s_{\bar{X}} = \frac{0.31}{\sqrt{8}} = 0.11$$

#### Standard deviation vs. standard error

Remember that

- the **standard deviation** measures the amount of variability in the *population*
- the **standard error** of the sample mean measures the amount of variability in the *sample mean*

#### Example: 8.2 in Aalen et al.

We have a sample of 4 independent measurements of cholesterol from a population with mean  $\mu=$  6.5 mmol/l and standard deviation  $\sigma=$  0.5 mmol/l

The expected value in the sample equals 6.5 mmol/l, and the standard error of the sample mean is  $\sigma/\sqrt{n} = 0.5/\sqrt{4} = 0.25$ 

Summary: properties of the sample mean

- The sample mean:  $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
- Expectation of the sample mean:  $E(\bar{X}) = \mu$
- Variance of the sample mean:  $Var(\bar{X}) = \frac{\sigma^2}{n}$
- Standard deviation of the sample mean = standard error:  $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
- The distribution of the sample mean:  $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ (the central limit theorem)