Introduction to Confidence Intervals

\author{

1. General idea, the CI based on Z
 2. The t-Student distribution
 3. t-Student's Cl for the population mean
 4. Two (independent) samples: t-Student's Cl for the mean difference
}

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO
valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics 10.04.2024

Cl when population standard deviation σ is known

- If either X_{1}, \ldots, X_{n} are normal distributed, or n is so large that the central limit theorem starts to work, then

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

- This means that we can produce a 95% confidence interval as follows:

$$
95 \% \mathrm{Cl}=\left(\bar{X}-1.96 \times \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \times \frac{\sigma}{\sqrt{n}}\right)
$$

where 1.96 is the two-sided $\mathbf{5 \%}$ point of the standard normal distribution.

- Small σ or large n gives more narrow intervals and means that \bar{X} is more likely to be similar to the true mean.

Unknown σ and the Student t -distribution

- The previous situation with known σ is rare in practice,
- We will use the previous strategy, but replace σ with the empirical standard deviation

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- The added uncertainty means that $\frac{\bar{X}-\mu}{s / \sqrt{n}}$ is not normal distributed anymore, but distributed according to the so-called Student t-distribution with n-1 degrees of freedom, written

$$
\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t(n-1)
$$

Figur 8.3 Standardnormalfordelingen er tegnet inn sammen med Studentfordelingen med 3 frihetsgrader. En ser at den siste fordelingen er mer spredt ut enn den første

- The higher degree of freedom the closer the stundent t is to the standard normal distribution $\mathrm{N}(0,1)$

Figur 8.4 Det er gjort 1000 utvalg, hvert på fire tall, fra et sett med data over mannlig kroppshøyde. Størrelsen t er beregnet i hvert av utvalgene, og histogrammet viser fordelingen av t-verdiene. Som sammenlikning vises den standardiserte normalfordelingen (prikket kurve) og Studentfordelingen med 3 frihetsgrader (heltrukket kurve)

95% confidence interval when σ is unknown

- Can use previous strategy, but we cannot use the percentage point 1.96 anymore, since $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is not normally distributed
- We must use the percentage point for the Student t -distribution with n -1 degrees of freedom instead, t^{\prime}
- We still need that either X_{1}, \ldots, X_{n} are normally distributed, or n is so large that the central limit theorem ensures that \bar{X} is normally distributed
- A 95\%-confidence interval is then given by:

$$
\mathrm{Cl}=\left(\bar{X}-t^{\prime} \times \frac{s}{\sqrt{n}}, \bar{X}+t^{\prime} \times \frac{s}{\sqrt{n}}\right)
$$

where s denotes the empirical standard deviation, and \bar{X} denotes the sample mean.

Example 6.3 in Kirkwood \& Sterne

The numbers of hours of relief obtained by six arthritic patients after receiving a new drug are recorded.

Patient no.	1	2	3	4	5	6
Number of hours	2.2	2.4	4.9	2.5	3.7	4.3

The sample mean is $\bar{X}=3.3$ hours, the empirical standard deviation is $s=1.13$ hours and the estimated standard error of the sample mean equals $s / \sqrt{n}=0.46$ hours. The number of degrees of freedom is $(n-1)=5$

The 95\% confidence interval (in hours) for the average number of hours of relief for arthritic patients in general is

$$
(3.3-2.57 \times 0.46,3.3+2.57 \times 0.46)=(2.1,4.5),
$$

where 2.57 is the two-sided 5% point of the t distribution with 5 degrees of freedom

We can simply use the normal distribution when n is large

- When n is large (150 or larger), then t^{\prime} is almost the same as 1.96 for practical purposes,
- Reflects that the Student t-distribution is almost identical to the standard normal distribution for large degrees of freedom,
- The 95% confidence interval for the population mean is then given by

$$
95 \% \mathrm{Cl}=\left(\bar{X}-1.96 \times \frac{s}{\sqrt{n}}, \bar{X}+1.96 \times \frac{s}{\sqrt{n}}\right) .
$$

Example 6.1 in Kirkwood \& Sterne

We want to estimate the amount of insecticide that would be required to spray all the 10000 houses in a rural area as part of a malaria control programme. A random sample of 100 houses is chosen and the sprayable surface of each of these is measured. The mean sprayable surface area for these 100 houses is $\bar{X}=24.2$ m^{2}, and the estimated standard deviation is $s=5.9 \mathrm{~m}^{2}$.
The estimated standard error of the sample mean is $s / \sqrt{n}=5.9 / \sqrt{100}=0.6 \mathrm{~m}^{2}$.

The 95% confidence interval is:

$$
(24.2-1.96 \times 0.6,24.2+1.96 \times 0.6)=(23.0,25.4)
$$

The upper 95\% confidence limit is used in budgeting for the amount of insecticide required per house. One litre of insecticide is sufficient to spray $50 \mathrm{~m}^{2}$ and so the amount (in litres) budgeted for is:

$$
10000 \times \frac{25.4}{50}=5080
$$

Small sample sizes

- The central limit theorem says that \bar{X} is normally distributed, even if the individual observations are not
- For smaller samples, we need that the individual samples are normally distributed
- This can be easily checked with a normality plot in \mathbf{R}
- When the distribution in the population is markedly non-normal, it may be desirable to
- use a transformation on the scale on which the variable X is measured, or
- calculate a non-parametric confidence interval, or
- use bootstrap methods

More on this in day 1 of week 2 !

Confidence interval vs. reference range

- If the population distribution is approximately normal, the 95% reference range is given by

$$
95 \% \text { reference range }=(\mu-1.96 \times \sigma, \mu+1.96 \times \sigma)
$$

where μ is the population mean and σ is the population standard deviation

- There is a clear distinction between the Cl and the reference range:
- the reference range describes the variability between individual observations in the population
- the confidence interval is a range of plausible values for the population mean, given the sample mean and its standard error Since the sample size $n>1$, the confidence interval will always be narrower than the reference range.

What if we have more than one Sample?

Two Independent Samples
2 groups: 1 measure for each individual, each which corresponds to a group (for example sick/healthy people)

Group 1		Group 2	
Ind.	Measure	Ind.	Measure
1	X_{11}	1	X_{12}
2	X_{21}	2	X_{22}
\ldots		\ldots	
		14	X_{142}
15	X_{151}		

The mean difference of two independent samples

- We want to compare the mean outcomes in two separate exposure (or treatment) groups: group 0 and group 1
- In clinical trials, these correspond to the treatment and control groups,
- We will then build a two-sample confidence interval,
- Notation:
n_{i} is number of individuals in group i,
- $X_{1, i}, \ldots, X_{n_{i}, i}$ observations in group n_{i},
- \bar{X}_{i} average in group i,
- μ_{i} mean in group i,
- σ_{i} standard deviation in group i,
- s_{i} empirical standard deviation in group i.

Assumptions and the Student t-distribution

- Independent individuals,
- Normal distributed averages, i.e. either
- Large enough samples such that averages become normal distributed, or
- Normal distributed observations,
- Equality of the two population standard deviations, σ_{1} and σ_{0}

This means that

$$
\begin{equation*}
t=\frac{\bar{X}_{1}-\bar{X}_{0}}{s \sqrt{\left(1 / n_{1}+1 / n_{0}\right)}} \tag{1}
\end{equation*}
$$

is t -distributed with $n_{1}+n_{0}-2$ degrees of freedom, where

$$
\begin{equation*}
s=\sqrt{\left[\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{0}-1\right) s_{0}^{2}}{\left(n_{1}+n_{0}-2\right)}\right]} \tag{2}
\end{equation*}
$$

Confidence interval for the mean difference $\mu_{1}-\mu_{0}$

- The confidence interval gives a range of likely values for the difference in population means, $\mu_{1}-\mu_{0}$, based on the difference in sample means, $\bar{X}_{1}-\bar{X}_{0}$:

$$
\mathrm{Cl}=\left(\bar{X}_{1}-\bar{X}_{0}\right) \pm t^{\prime} \times s \sqrt{1 / n_{1}+1 / n_{0}}
$$

where the common estimate, s, of the population standard deviation is given by (also at the previous slide):

$$
s=\sqrt{\left[\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{0}-1\right) s_{0}^{2}}{\left(n_{1}+n_{0}-2\right)}\right]}
$$

and t^{\prime} is the appropriate percentage point of the t distribution with $\left(n_{1}+n_{0}-2\right)$ degrees of freedom

Example: 7.2 in Kirkwood \& Sterne

We consider the birth weights (in kg) of children born to 14 heavy smokers (group 1) and to 15 non-smokers (group 0), sampled from live births at a large teaching hospital

Heavy smokers (group 1)	Non-smokers (group 0)
3.18	3.99
2.74	3.89
2.90	3.60
3.27	3.73
3.65	3.31
3.42	3.70
3.23	4.08
2.86	3.61
3.60	3.83
3.65	3.41
3.69	4.13
3.53	3.36
2.38	3.54
2.34	3.51
	2.71
$\bar{X}_{1}=3.1743$	$\bar{X}_{0}=3.6267$
$s_{1}=0.4631$	$s_{0}=0.3584$
$n_{1}=14$	$n_{0}=15$

The difference between the means is given by

$$
\bar{X}_{1}-\bar{X}_{0}=3.1743-3.6267=-0.4524
$$

and the standard deviation is given by

$$
s=\sqrt{\frac{13 \times 0.4631^{2}+14 \times 0.3584^{2}}{14+15-2}}=0.4121
$$

with $(14+15-2)=27$ degrees of freedom. The standard error of the difference is given by

$$
\widehat{\text { s.e. }}=0.4121 \times \sqrt{(1 / 14+1 / 15)}=0.1531
$$

The 95\% confidence interval for the difference between the mean birth weight is given by

$$
\begin{aligned}
(-0.4524-2.05 \times 0.1531,-0.4524+2.05 & \times 0.1531) \\
& =(-0.77,-0.14)
\end{aligned}
$$

where 2.05 is the 5% point of the t distribution with 27 degrees of freedom

