Introduction to Hypothesis Testing

1. One-sample Student t-test
2. Test for paired data
3. Two-sample Student t-test

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO
valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics
10.04.2024

One-sample Student t-test

One-sample Student t-test (shortly, one sample t-test)

- The one-sample Student t-test is one of the most frequently applied tests in statistics. It is used to test a certain hypothesis about the unknown population mean μ

Background

- The t-test was devised by William Sealy Gosset, working for Guinness brewery in Dublin, to cheaply monitor the quality of stout
- Published in Biometrika in 1908 under the pen name "Student" as Guinness regarded the fact that they used statistics a trade secret

P-value

Definition

The probability that the observed result, or a result more extreme, is true, given H_{0} is true.

Then:

- The p-value is a measure of how likely our observed result is, under the H_{0} assumption.
- If the p-value is small, then what we have observed is rare under H_{0}, which means we have evidence against it.
- p-values are used to evaluate the hypothesis test result, in terms of the strength of the evidence that the test provides.

P-value

The one sample t-test: an example

- 30 measures of lactate dehydrogenase (LD)
- Question: $\mu=105$?
- Test: $H_{0}: \mu=105, H_{a}: \mu>105$
- We know that if H_{0} is true, then

$$
T_{0}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}} \rightarrow t(n-1)
$$

T_{0} is called test statistic

- For our example: $T_{0}=\frac{108.8-105}{7.88 / \sqrt{30}}=2.64$
- When would you reject the null hypothesis? Two options:
- when T_{0} is large, meaning when $T_{0}>t_{n-1, \alpha}$, $\mathbf{O R}$
- when $p<\alpha$
- In our example: $T_{0}=2.64>t_{29,0.05}=1.699 \rightarrow$ Rejection
- When the test is two-sided $\left(H_{a}: \mu \neq 105\right)$, use $t_{29,0.025}=2.04$

How to get the P -value

- If two-sided test: $\left.p=2 P_{H_{0}}\left(t>\left|T_{0}\right|\right)\right)$
- R or other statistical softwares produce the p -value automatically

Paired data

Paired measurements

- In medical settings we often deal with paired measurements, which is two outcomes measured on
- the same individual under different exposure (or treatment) circumstances
- two individuals matched by certain key characteristics
- The pairing in the data is taking into account by considering the differences between each pair of outcome observations. In that way the data are turned into a single sample of differences

Paired measurements

2 measures of each individual (for example before/after treatment)

Individual	Measure 1	Measure 2
1	X_{11}	X_{12}
2	X_{21}	X_{22}
3	X_{31}	X_{32}
\ldots	\ldots	\ldots

Example: 7.3 in Kirkwood \& Sterne

We consider the results of a clinical trial to test the effectiveness of a sleeping drug. The sleep of ten patients was observed during one night with the drug and one night with placebo. For each patient a pair of sleep times, was recorded and the difference between these calculated

	Hours of sleep		
Patient	Drug	Placebo	Difference
1	6.1	5.2	0.9
2	6.0	7.9	-1.9
3	8.2	3.9	4.3
4	7.6	4.7	2.9
5	6.5	5.3	1.2
6	5.4	7.4	-2.0
7	6.9	4.2	2.7
8	6.7	6.1	0.6
9	7.4	3.8	3.6
10	5.8	7.3	-1.5
			$\bar{X}=1.08$

The observed mean difference in sleep time was $\bar{X}=1.08$ hours, and the empirical standard deviation of the differences was $s=2.31$. The estimated standard error of the differences is $s / \sqrt{n}=2.31 / \sqrt{10}=0.73$ hours

A 95\% confidence interval for the mean difference in sleep time in the population is given by

$$
(1.08-2.26 \times 0.73,1.08+2.26 \times 0.73)=(-0.57,2.73)
$$

where 2.26 is the two-sided $\mathbf{5 \%}$ point of the t distribution with $(n-1)=9$ degrees of freedom

The mean difference in sleep time was $\bar{X}=1.08$ hours, and the estimated standard error was $s / \sqrt{n}=0.73$ hours. The test statistic is given by

$$
t=1.08 / 0.73=1.48
$$

which is t distributed with $(n-1)=9$ degrees of freedom when the null hypothesis of no effect is true. The corresponding P-value, which is the probability of getting a t value with a size as large as this or larger in a t distribution with 9 degrees of freedom, is

$$
p=0.17
$$

So, there is no evidence against the null hypothesis that the drug does not affect sleep time

Two sample t-test

So far...

- Tests and confidence intervals for
- Single sample
- Paired samples
- We know how to test (the procedure)

Now:

- Test for the difference in the mean of two independent samples

The data: two different settings. Now focus on situation 2
(1) Paired data: 2 measures of each individual (for example before/after treatment)

Individual	Measure 1	Measure 2
1	X_{11}	X_{12}
2	X_{21}	X_{22}
3	X_{31}	X_{32}
\ldots	\ldots	\ldots

(2) 2 groups: 1 measure of each individual, each which corresponds to a group (for example sick/healthy people)

Group 1		Group 2	
Ind.	Measure	Ind.	Measure
1	X_{11}	1	X_{12}
2	X_{21}	2	X_{22}
\ldots		\ldots	
		14	X_{142}
15	X_{151}		

The two sample t-test

- The null hypothesis is given by

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{0} \quad \text { or } \quad \mathrm{H}_{0}: \mu_{1}-\mu_{0}=0
$$

i.e. there is no difference between the population means in the two groups

- The test statistic is given by

$$
t=\frac{\bar{X}_{1}-\bar{X}_{0}}{s \sqrt{\left(1 / n_{1}+1 / n_{0}\right)}},
$$

which follow a t distribution with $\left(n_{1}+n_{0}-2\right)$ degrees of freedom. Here, s is the common estimate of the population standard deviation:

$$
s=\sqrt{\left[\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{0}-1\right) s_{0}^{2}}{n_{1}+n_{0}-2}\right]}
$$

Example: 7.2 in Kirkwood \& Sterne

We return to the data of birth weights. The test statistic is given by

$$
t=\frac{3.1743-3.6267}{0.4121 \sqrt{(1 / 14+1 / 15)}}=-\frac{0.4524}{0.1531}=-2.95
$$

The corresponding \boldsymbol{P}-value calculated from the t distribution with $(14+15-2)=27$ degrees of freedom is given as:

$$
p=0.006
$$

Therefore, the data suggest that smoking during pregnancy reduces the birthweight of the baby

Test statistic

- In the one sample t-test we had

$$
T=\frac{\bar{X}_{n}-\mu_{0}}{s} \sqrt{n}
$$

- Now $T=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{p}} \sqrt{n_{p}}$
S_{p} is the pooled standard deviation $\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}$ and
$n_{p}=\frac{n_{1} \cdot n_{2}}{n_{1}+n_{2}}$.

Test statistic (cont.)

- $T \sim t_{n_{1}+n_{2}-2}$ under the null hypothesis H_{0}
- Rejection and conclusion:

H_{0}	$\mu_{1}=\mu_{2}$
Rejection, if	$\left\|\mathrm{T}_{0}\right\|$ large
Rejection, if	$\mathrm{P}=2 \mathrm{P}_{\mathrm{H}_{0}}\left(\mathrm{t}>\left\|\mathrm{T}_{0}\right\|\right)<\alpha$
Conclusion	$\mu_{1} \neq \mu_{2}$

Small samples, unequal standard deviations

- When the population standard deviations, σ_{1} and σ_{0}, of the two groups are different, and the sample size, n, is not large, the main possibilities are:
- Use a transformation on the data which makes the standard deviations similar so that methods based on the t distribution can be used
- Use non-parametric methods based on ranks
- Use either the Fisher-Behrens or the Welch tests, which allow for unequal deviations
- Estimate the difference between the means using the original measurements, but use bootstrap methods to derive confidence intervals

How to check for normal distribution

- Box-plot
- Histograms
- Q-Q plot

What if the data does not look normal?

- Try to find a meaningful transformation
- Use a test which does not assume normally distributed data
\rightarrow Lecture on transformations and non-parametric methods in day
1 of week 2

