Day 4 - Statistical Inference Part II

1. Inference for Proportions 2. Table Analysis

Valeria Vitelli Oslo Centre for Biostatistics and Epidemiology Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E – Introductory Course in Statistics 11.04.2024 Statistical Inference, part II: Overview

Schedule for today: Lectures in flipped classroom style

- 12:45 13:45 Introductory lecture
- 13:45 14:30 Self study session*
- 14:30 15:00 Group work session*
- 15:00 15:30 Closing session (Wrap-up / Q&A)

[*you should take a break at some point in these two stretches]

Tomorrow morning: Lab in flipped classroom style

- Point estimates and CIs for proportions with ${\bf R}$
- Table Analysis with **R**

Statistical Inference, part II: Introductory Lecture

Key concepts

1 Analysis of Proportions

- Proportions and the Binomial distribution
- Inference for one population

2 Comparing two proportions

- Effect estimates (risk difference, relative risk, odds ratio)
- 2 × 2 contingency tables

3 Table Analysis

- Pearson's Chi-squared test
- Exact tests (Fisher's exact test)
- Larger Tables

Key concept 1. Analysis of Proportions

Yesterday:

- Analysis of **continuous data**: data measured on a continuous scale
- Used t-tests to test for differences between groups

Today:

Binomial data

- Testing for differences in proportions between groups
- New measures of the effect: Relative Risk and Odds Ratio

Key concept 1. Proportions and the Binomial distribution

Risk

- Binary variable with two possible outcomes:
 D (disease) and H (healthy)
- Study the **probability** or **risk**, π , that D occurs in the population

Sample proportion

• **sample proportion** *p* is the proportion of individuals in the sample in category D:

$$p=\frac{d}{n}$$

where d = number of subjects who experience D, and n = sample size

• *p* is an **estimate** of the probability or **risk for D in the population**

Key concept 1. Proportions and the Binomial distribution

Recap from yesterday morning: the binomial distribution!

- Assumptions: independent experiments, two outcomes (success / not), probability of success same in all experiments
- Therefore, the **sampling distribution of a proportion** is the binomial distribution

The normal approximation to the binomial distribution

- When n is large, the binomial distribution can be approximated by a normal distribution with the same mean and standard error as the binomial distribution
 (Rule of thumb: n × π ≥ 10 and n × (1 − π) ≥ 10)
- This is useful for:
 - calculating confidence intervals
 - carrying out hypothesis tests

Key concept 1. Inference for one population

Confidence interval for a proportion

Given the normal approximation to the binomial distribution, the **CI for the population proportion**, π , is

$$\mathsf{CI} = \left(p - z' \times \sqrt{\frac{p(1-p)}{n}}, p + z' \times \sqrt{\frac{p(1-p)}{n}}\right),$$

where z' is the appropriate percentage point of the standard normal distribution (1.96 if 95% CI)

Testing a hypothesis about one proportion

To test the null hypothesis that the population proportion equals a particular value, π_0 :

$$\mathrm{H}_{\mathbf{0}}: \pi = \pi_{\mathbf{0}}, \mathrm{H}_{\mathbf{a}}: \pi \neq \pi_{\mathbf{0}},$$

we perform a z-test using the approximating normal distribution

Key concept 2. Comparing two proportions

Exposed versus unexposed

We want to compare **two exposure (or treatment) groups** with respect to the occurrence of a binary outcome

- group 1: individuals *exposed* to a risk factor group 0: *unexposed* individuals
- Clinical trials: group 1: treatment group group 0: control (or placebo) group

Different Measures

for comparing the outcome between the two groups

- Risk difference (not that much used in practice)
- Risk ratio, or relative risk
- Odds ratio

Each measure has an associated confidence interval

Key concept 2. Contingency Tables

2×2 contingency table

- Individuals are classified according to their exposure and outcome categories
- Cross tabulation is used to display the data in a 2×2 contingency table

	Outcome		
	Event:	No event:	
Exposure	D (Disease)	H (Healthy)	Total
Group 1 (exposed)	$d_1 (d_1/n_1 \times 100\%)$	$h_1 (h_1/n_1 \times 100\%)$	n ₁ (100%)
Group 0 (unexposed)	$d_0 \; (d_0/n_0 imes 100\%)$	$h_0 \; (h_0/n_0 imes 100\%)$	n ₀ (100%)
Total	d	h	п

 Showing the proportion (or percentage) in each outcome category, within each of the exposure groups can be useful

Key concept 3. Table Analysis

So far:

- Analysis of **proportions** one and two populations, Cls
- 2 × 2 contingency tables

Now:

- How to test for a significant association?
 - Chi-square tests are the most common
 - In case of little data: exact tests
- What if you have **more than two** exposure categories? Or outcomes?

Key concept 3. Table Analysis

Pearson's Chi-squared test (for a 2×2 table)

- Null hypothesis: no association between exposure and outcome
- The test statistic is

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}, \quad d.f. = 1,$$

where O_i and E_i denote the observed and expected values in the *i*th cell

- The value of the test statistic χ^2 is **extreme** when values in the table are very **unlikely** under the null hypothesis
- For a 2 × 2 table the test statistic is chi-squared distributed with 1 degree of freedom under the null hypothesis (equivalent to the *z*-**test** for the difference between two proportions).

Key concept 3. Table Analysis

Test validity

- The chi-squared test is valid when:
 - The overall total is more than 40, regardless of the expected values, or
 - The overall total is between 20 and 40 provided all the expected values are at least 5
- The use of the **exact test** is recommended when:
 - ► The overall total of the table is less than 20, or
 - The overall total is between 20 and 40 and the smallest of the four expected numbers is less than 5

Important

- The chi-squared test produces only a p-value
- A measure of the effect (RD, RR or OR; with relative CI) is required when publishing, for helping results interpretation

Summary

Key terms and concepts

- Recap from Day 3 (the **Binomial distribution**)
- Analysis of Proportions: CI and z-test for one proportion
- Comparing two proportions:
 - 2×2 contingency tables, effect estimates:
 - Risk difference, and associated CI
 - Relative Risk (RR), and associated CI
 - Odds Ratio (OR), and associated CI
- Table Analysis:
 - Pearson's Chi-squared test, test validity
 - Fisher's exact test, when to use it

Self study session – Tasks

- **1 Deepen your understanding** of each **key concept** from the previous slides by reading the corresponding longer slides:
 - day4_key_concept_1.pdf
 - day4_key_concept_2.pdf
 - day4_key_concept_3.pdf
- **2** Verify your learning outcome:
 - Review the Summary (slide 13, "Key terms and concepts") in this presentation, and make sure you understand all terms
 - IF you feel you are still not familiar with any terms and concepts from the summary slides, then
 - use the provided Learning Material (next slide) to read more
 - ASK ME!! (I will be in class)
- OPREPARE for the group work session by keeping in mind the "Guiding questions for the group work session" (slide 16) when reviewing the material

Learning Material

- Analysis of Proportions: Aalen chapter 6.1-6.2, Kirkwood and Sterne (K&S) chapter 15
- Comparing two proportions: Aalen chapter 6.3, K&S chapter 16
- Table Analysis: Aalen chapter 6.5, K&S chapter 17

Group work session

Task

In your group (which should include 4-6 participants), jointly revise the following guiding questions and provide an answer

Guiding questions

- What is the assumption that is the basis for CI and *z*-test for a proportion? Which are the two situations in which it can fail?
- How do you interpret the role of the exposure when the associated relative risk (or OR) is larger than 1? And how when smaller than 1?
- **3** When a Chi-squared test with $\alpha = 5\%$ shows evidence to reject the null hypothesis, what does this imply on the 95%-Cl for the risk difference? And on the one for the relative risk?