Analysis of Proportions

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics
11.04.2024

Proportions and the binomial distribution

The binomial distribution function

- The formula for a binomial probability, or, the probability of getting exactly d events in a sample of n individuals is

$$
P(d \text { events })=\binom{n}{d} \pi^{d}(1-\pi)^{n-d}
$$

where $d!=1 \times 2 \times \ldots \times d$, and π is the population probability of the event of interest (D)

- We wish to estimate π using p
- How much do does p differ from the true, unknown π ? What is the uncertainty?

Standard error of a proportion

- The standard error of the proportion of D's in a sample is:

$$
\text { s.e. }=\sqrt{\frac{\pi(1-\pi)}{n}}
$$

where n is the sample size. It measures how closely the sample proportion estimates the population proportion

- The standard error is estimated by:

$$
\widehat{\text { s.e. }}=\sqrt{\frac{p(1-p)}{n}},
$$

with π replaced by p

The normal approximation to the binomial distribution

- When the sample size, n, increases, the binomial distribution can be approximated by a normal distribution with the same mean and standard error as for the binomial distribution
- This is useful for:
- calculating confidence intervals
- carrying out hypothesis tests
- Rule of thumb: The approximation is valid when both $n \times \pi$ and $n \times(1-\pi)$ is greater than or equal to 10

Confidence interval for a proportion

- Given that the normal approximation to the binomial distribution is sufficiently good, the confidence interval for the population proportion, π, is

$$
\mathrm{Cl}=\left(p-z^{\prime} \times \sqrt{\frac{p(1-p)}{n}}, p+z^{\prime} \times \sqrt{\frac{p(1-p)}{n}}\right)
$$

where z^{\prime} is the appropriate percentage point of the standard normal distribution (typically 1.96), n is the sample size, and p is the sample proportion

Example: 15.3 in Kirkwood \& Sterne

In September 2001 a survey of smoking habits was conducted in a sample of 1000 teenagers aged $15-16$, selected at random from all 15-16 year-olds living in Birmingham, UK. A total of 123 reported that they were current smokers

Thus the proportion of current smokers is estimated by

$$
p=\frac{123}{1000}=0.123=12.3 \%
$$

The standard error of p is estimated by:

$$
\widehat{\text { s.e. }}=\sqrt{\frac{0.123 \times(1-0.123)}{1000}}=0.0104
$$

Thus the 95% confidence interval for the population probability is:

$$
\begin{aligned}
95 \% \mathrm{Cl} & =(0.123-1.96 \times 0.0104,0.123+1.96 \times 0.0104) \\
& =(0.103,0.143)
\end{aligned}
$$

This means that with 95% confidence, in September 2001 the proportion of $15-16$ year-olds living in Birmingham who smoked was between 10.3% and 14.3%

Testing a hypothesis about one proportion

Hypothesis testing

- To test the null hypothesis that the population proportion equals a particular value, π_{0} :

$$
\mathrm{H}_{0}: \pi=\pi_{0}, \mathrm{H}_{a}: \pi \neq \pi_{0}
$$

we perform a z-test using the approximating normal distribution
z-test

- Providing that both $n \times \pi_{0}$ and $n \times\left(1-\pi_{0}\right)$ are greater than or equal to 10 , the test statistic

$$
z=\frac{p-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}
$$

is standard normally distributed

- From the test statistic we derive a corresponding P-value, which is the probability that $\pi=\pi_{0}$ (or something more extreme)

Example: 15.3 in Kirkwood \& Sterne
In 1998 the UK Government announced a target of reducing smoking among children from the national average of 13% to 9% or less by the year 2010, with a fall to 11% by the year 2005. Is there evidence that the proportion of 15-16 year-old smokers in Birmingham at the time of our survey in 2001 was below the national average of 13% at the time the target was set?

To answer the question, we carry out a statistical test where the null hypothesis states that the population proportion is equal to $0.13(13 \%)$, while the alternative states that the population proportion is less than 0.13 (13%):

$$
\mathrm{H}_{0}: \quad \pi=0.13 \text { vs } \mathrm{H}_{1}: \pi<0.13
$$

The standard error of the sample proportion, p, under the null hypothesis is:

$$
\sqrt{\frac{0.13 \times(1-0.13)}{1000}}=0.106
$$

The observed value of the test statistic is therefore:

$$
z=\frac{0.123-0.13}{0.106}=-0.658
$$

with a corresponding (one-sided) \boldsymbol{P}-value equal to 0.255 . This means that there is no evidence that the proportion of teenage smokers in Birmingham in September 2001 was lower than the national 1998 levels

