Comparing two proportions

1. Effect estimates (risk difference, relative risk, odds ratio) 2. 2×2 contingency tables

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO
valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics
11.04.2024

Risk difference

- The risk difference $R D$ is a measure of the difference in risk, $\pi_{1}-\pi_{0}$, between the exposed and unexposed groups in the population
- It is estimated by the sample difference

$$
\widehat{\mathrm{RD}}=p_{1}-p_{0}
$$

- Providing that
- $n_{1} \times p_{1} \geqslant 10$ and $n_{1} \times\left(1-p_{1}\right) \geqslant 10$ in the exposed group, and
- $n_{0} \times p_{0} \geqslant 10$ and $n_{0} \times\left(1-p_{0}\right) \geqslant 10$ in the unexposed group we use a normal approximation to the sampling distribution of $p_{1}-p_{0}$
- The standard error of the sample difference is

$$
\begin{aligned}
\text { s.e. }\left(p_{1}-p_{0}\right) & =\sqrt{\text { s.e. }\left(p_{1}\right)^{2}+\text { s.e. }\left(p_{0}\right)^{2}} \\
& =\sqrt{\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{0}\left(1-\pi_{0}\right)}{n_{0}}}
\end{aligned}
$$

where s.e. $\left(p_{1}\right)$ and s.e. $\left(p_{0}\right)$ are the standard errors of the proportions in the exposed and unexposed groups respectively

Cl for the risk difference

- The confidence interval for the risk difference, i.e., for the difference between two proportions $\pi_{1}-\pi_{0}$, is given by

$$
\mathrm{CI}=\left(p_{1}-p_{0}\right) \pm z^{\prime} \times \text { s.e. }\left(p_{1}-p_{0}\right)
$$

where z^{\prime} is the appropriate percentage point of the standard normal distribution

Example: 16.1 in Kirkwood \& Sterne
We consider the results from an influenza vaccine trial carried out during an epidemic.
Of $n=460$ adults who took part, $n_{1}=240$ received influenza vaccination and $n_{0}=220$ received placebo vaccination. Overall $d=100$ people contracted influenza, of whom $d_{1}=20$ were in the vaccine group and $d_{0}=80$ in the placebo group.
The results are displayed in a 2×2 table.

	Influenza		
	Yes	No	Total
Vaccine	$20(8.3 \%)$	$220(91.7 \%)$	$240(100 \%)$
Placebo	$80(36.4 \%)$	$140(63.6 \%)$	$220(100 \%)$
Total	$100(21.7 \%)$	$360(78.3 \%)$	$460(100 \%)$

The overall proportion of subjects in the sample who got influenza is

$$
p=\frac{100}{460}=0.217=21.7 \%
$$

The percentage getting influenza was much lower in the vaccine group (8.3\%) than in the placebo group (36.4\%)

The estimated risk difference between the vaccine and placebo groups is:

$$
\widehat{\mathrm{RD}}=0.083-0.364=-0.281
$$

Its estimated standard error is

$$
\begin{aligned}
\widehat{\text { s.e. }}\left(p_{1}-p_{0}\right) & =\sqrt{\frac{0.083 \times(1-0.083)}{240}+\frac{0.364 \times(1-0.364)}{220}} \\
& =0.037 .
\end{aligned}
$$

The approximate 95% confidence interval for this reduction is:

$$
\begin{aligned}
95 \% \mathrm{CI} & =(-0.281-1.96 \times 0.037,-0.281+1.96 \times 0.037) \\
& =(-0.353,-0.208)
\end{aligned}
$$

This means that we are 95% confident that in the population the vaccine would reduce the risk of contracting influenza by between 20.8% and 35.3%.

Relative Risk

- The relative risk, or risk ratio, $R R$ is the ratio of the two population proportions π_{1} / π_{0}
- Estimated by

$$
\widehat{\mathrm{RR}}=\frac{p_{1}}{p_{0}}=\frac{d_{1} / n_{1}}{d_{0} / n_{0}}
$$

where p_{1} and p_{0} are the sample proportions in the exposed and unexposed groups

Properties of the relative risk

- $R R=1$: the risks are the same in the two groups
- $R R>1$: the risk of the outcome is higher among those exposed to the risk factor
- $R R<1$: the risk of the outcome is lower among those exposed to the risk factor
- The further the relative risk is from 1 , the stronger the association between exposure and outcome

Cl for the relative risk

- The 95% confidence interval for the relative risk is

$$
\begin{aligned}
95 \% \mathrm{CI}=(\exp \{ & \log \widehat{\mathrm{RR}}-1.96 \times \text { s.e. }(\log \widehat{\mathrm{RR}})\} \\
& \exp \{\log \widehat{\mathrm{RR}}+1.96 \times \text { s.e. }(\log \widehat{\mathrm{RR}})\})
\end{aligned}
$$

where the estimated standard error of the natural logarithm of the estimated risk ratio (i.e., the sample ratio) is

$$
\widehat{\text { s.e. }}(\log \widehat{R R})=\sqrt{1 / d_{1}-1 / n_{1}+1 / d_{0}-1 / n_{0}}
$$

Example: 16.2 in Kirkwood \& Sterne

	Lung cancer		Total
	Yes	No	
Smokers (exposed)	$39(0.13 \%)$	$29961(99.87 \%)$	$30000(100 \%)$
Non-smokers (unexposed)	$6(0.01 \%)$	$59994(99.99 \%)$	$60000(100 \%)$
Total	$45(0.05 \%)$	$89955(99.95 \%)$	$90000(100 \%)$

A cohort study to investigate the association between smoking and lung cancer. The estimated risk ratio is

$$
\widehat{\mathrm{RR}}=\frac{0.0013}{0.0001}=13 .
$$

The estimated standard error of the natural logarithm of the estimated risk ratio is:

$$
\widehat{\text { s.e. }}(\log \widehat{\mathrm{RR}})=\sqrt{1 / 39-1 / 30000+1 / 6-1 / 60000}=0.438
$$

The 95% confidence interval for the risk ratio is therefore:

$$
\begin{aligned}
95 \% \mathrm{CI}= & (\exp \{\log (13)-1.96 \times 0.438\}, \\
& \quad \exp \{\log (13)+1.96 \times 0.438\}) \\
= & (5.5,30.7)
\end{aligned}
$$

This means that we are 95% confident that the risk of lung cancer among smokers is between 5.5 and 30.7 times larger than the risk of lung cancer among non-smokers

Odds

- The odds of an outcome D is defined as

$$
\text { Odds }=\frac{P(D \text { happens })}{P(D \text { does not happen })}=\frac{P(D)}{1-P(D)}
$$

- The odds is estimated by

$$
\widehat{\mathrm{Odds}}=\frac{p}{1-p}=\frac{d / n}{1-d / n}=\frac{d / n}{h / n}=\frac{d}{h},
$$

which is the number of individuals who experience the event divided by the number of individuals who do not experience the event

Odds Ratio

- The odds ratio is denoted by OR and is the ratio between the odds in the exposed group and the odds in the unexposed group
- It is estimated by

$$
\widehat{\mathrm{OR}}=\frac{d_{1} / h_{1}}{d_{0} / h_{0}}=\frac{d_{1} \times h_{0}}{d_{0} \times h_{1}}
$$

which is also known as the cross-product ratio of the 2×2 table

Properties of the odds ratio

- $O R$ is one of the most common effect measures in medical statistics, even though it is less intuitive than $R R$
- Odds used in for example logistic regression
- $O R=1$ occurs when the odds, and hence the proportions, are the same in the two groups
- The $O R$ is always further away from 1 than the corresponding $R R$,
- For rare outcomes the $O R$ is approximately equal to the $R R$
- OR(disease) $=1 / O R$ (healthy) (this is not the case for RR)

Example: 16.4 in Kirkwood \& Sterne

Consider a study in which we monitor the risk of severe nausea during chemotherapy for breast cancer. A new drug is compared with standard treatment

	Number with severe nausea	Number without severe nausea	Total
New drug	$88(88 \%)$	12	100
Standard treatment	$71(71 \%)$	29	100

The estimated risk of severe nausea in the group treated with the new drug is

$$
p_{1}=\frac{88}{100}=0.880=88.0 \%,
$$

and the estimated risk of severe nausea in the group given the standard treatment is

$$
p_{0}=\frac{71}{100}=0.710=71.0 \%
$$

The estimated relative risk is

$$
\widehat{\mathrm{RR}}=\frac{88 / 100}{71 / 100}=1.239
$$

an apparently moderate increase in the prevalence of nausea. The estimated odds ratio is

$$
\widehat{\mathrm{OR}}=\frac{88 / 12}{71 / 29}=2.995
$$

a much more dramatic increase

Suppose now that we consider our outcome to be absence of nausea. Then the estimated risk ratio is:

$$
\widehat{\mathrm{RR}}=\frac{12 / 100}{29 / 100}=0.414
$$

which means that the proportion of patients without severe nausea has more than halved. The estimated odds ratio is:

$$
\widehat{\mathrm{OR}}=\frac{12 / 88}{29 / 71}=0.334
$$

which is exactly the inverse of the odds ratio for nausea ($1 / 2.995=0.334$)

Cl for the odds ratio

- The 95% confidence interval for the odds ratio is

$$
\left.\begin{array}{rl}
95 \% \mathrm{CI}=(& \exp \{
\end{array} \log \widehat{\mathrm{OR}}-1.96 \times \text { s.e. }(\log \widehat{\mathrm{OR}})\right\},
$$

where the estimated standard error of the natural logarithm of the estimated odds ratio (i.e., the sample ratio) is

$$
\widehat{\text { s.e. }(\log } \widehat{\mathrm{OR}})=\sqrt{1 / d_{1}+1 / h_{1}+1 / d_{0}+1 / h_{0}}
$$

which is also known as Woolf's formula

Example: 16.3 in Kirkwood \& Sterne

Consider the survey from Example 15.5 in Kirkwood \& Sterne (2003) of $n=2000$ patients aged 15 to 50 registered with a particular general practice. It showed that $d=138$ (6.9\%) were being treated for asthma.

	Asthma		
	Yes	No	Total
Women	81	995	1076
Men	57	867	924
Total	138	1862	2000

The estimated prevalences of asthma (proportions with asthma) in women and men are:

$$
p_{1}=\frac{81}{1076}=0.0753=7.53 \%
$$

and

$$
p_{0}=\frac{57}{924}=0.0617=6.17 \%
$$

respectively. The estimated risk ratio is:

$$
\widehat{\mathrm{RR}}=\frac{0.0753}{0.0617}=1.220
$$

The estimated odds of asthma in women and men are:

$$
\frac{p_{1}}{h_{1}}=\frac{81}{995}=0.0814
$$

and

$$
\frac{p_{0}}{h_{0}}=\frac{57}{867}=0.0657,
$$

respectively. The estimated odds ratio is:

$$
\widehat{\mathrm{OR}}=\frac{0.0814}{0.0657}=1.238
$$

The estimated odds ratio of 1.238 indicates that asthma is more common among women than men.

The estimated standard error of the natural logarithm of the estimated odds ratio is given by

$$
\widehat{\text { s.e. }}(\log \widehat{\mathrm{OR}})=\sqrt{1 / 81+1 / 995+1 / 57+1 / 867}=0.179
$$

The 95% confidence interval for the odds ratio is therefore:

$$
\begin{aligned}
95 \% \mathrm{CI}= & (\exp \{\log (1.238)-1.96 \times 0.179\}, \\
& \quad \exp \{\log (1.238)+1.96 \times 0.179\}) \\
= & (0.872,1.758)
\end{aligned}
$$

This means that with 95% confidence, the odds ratio in the population lies between 0.872 and 1.758

