Lecture - Day 2 (part 2) Diagnostic tests

MF9130E V24 2024.04.09

Chi Zhang

Oslo Center for Biostatistics and Epidemiology chi.zhang@medisin.uio.no

Outline

Aalen chapter 3.9-3.10, Kirkwood and Sterne chapter 36.2

- Diagnostic tests
- Sensitivity, specificity and related concepts
- Relation to Bayes Law
- ROC curve

Diagnostic testing Introduction

Covid: RT-PCR, antigen (lateral flow test), antibody

Daily new confirmed COVID-19 cases per million people
7 -day rolling averagc. Due to limited testing, the number of confirmed cases is lower than the teve number of infections.

Diagnostic testing

"PCR test is a highly sensitive and accurate test"
"Antigen test is less sensitive than PCR tests"

PCR

sensitivity: around 80\%; specificity: 98-99\%

Rapid antigen test
overall sensitivity 65.3\%; specificity 99.9\%

Among asymptomatic individuals, sensitivity 44\%

Covid-19 Testing

PCR TEST

A PCR is the most accurate type of Covid-19 test. Test samples are analysed in a lab and the results can take up to 72 hours.

For people WITH symptoms or to confirm a positive lateral flow

- Fever (hot or cold chils)
- Cough
- Loss of taste/smell

Book your PCR test orline by visting www.gov.uk/cet-coronavirus-test or by phoning 119.

LATERAL FLOW TEST

For people WITHOUT symptoms
This is designed for regular testing, in particular for those who require monitoring for work or school. It is useful for detecting coronavirus before symptoms show.

If you have a cough or a fever, a lateral flow test is NOT sufficient to rule out Covid infection.

Diagnostic testing

Mammography: an imaging technique used for early detection of breast cancer. Itself is not enough for diagnosis of cancer.

Used together with FNAC (fine needle aspiration biopsy) - more accurate, higher PPV (more on PPV later)

How much do we trust the mammography for diagnosis of breast cancer?

		Mammography	
		Cancer	Not cancer
Final diagnosis	Cancer	22	3
	Not cancer	16	331

Confusion matrix

A 2 by 2 table for test result and true conditions

		Predicted (test result)	
		Positive	Negative
Actual condition	Positive	True Positive TP	False Negative FN
	Negative	False Positive FP	True Negative TN

		Mammography	
		Benign	
Final diagnosis	Malignant	22	3
	Benign	16	331

Sensitivity, specificity

Sensitivity: the ability (expressed as probability) to identify those with disease; i.e. having positive conditions

$$
\mathrm{TP} / \mathrm{P}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})
$$

If a test has a sensitivity of 98% :
for 100 people who have the disease, 98 can be detected, 2 are missed by the test

Sensitivity, specificity

		Predicted (test result)	
		Positive	Negative
Actual condition	Positive	True Positive TP	False Negative FN
	Negative	False Positive FP	True Negative TN

Specificity: the ability to identify those without disease; i.e. having negative conditions

$$
\mathrm{TN} / \mathrm{N}=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})
$$

If a test has a specificity of 99\%: for 100 people who do not have the disease: 99 can be identified, 1 has a positive result but it is wrong (false postive).

Example: mammography

		Mammography	
		Cancer	Not cancer
Final diagnosis	Cancer	22	3
	Not cancer	16	331

Identify positive and negatives: cancer outcome is positive

Sensitivity: TP/P = TP/(TP+FN) =22/(22+3) $=0.88$
For 100 people who have the disease, 88% can be identified

Specificity: TN/N = TN/(TN+FP) = 331/(331+16) = 0.95
For 100 people who do not have the disease, 95% can be identified

Positive predictive value

Positive predictive value (PPV): probability that a positive test result is correct, i.e. identifies the positive actual condition

$$
\mathrm{PPV}=\mathrm{TP} / \text { positive test }=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})
$$

True and false positive rate

		Predicted (test result)	
		Positive	Negative
Actual condition	Positive	True Positive TP	False Negative FN
	Negative	False Positive FP	True Negative TN

True positive rate (TPR): among the positives (e.g. disease), how many are tested as positive (true positives)
TPR = TP/P= sensitivity

False positive rate (FPR): among the negatives (e.g. healthy), how many are tested as positive (false positives)

$$
F P R=F P / N=F P /(F P+T N)=1-\text { specificity }
$$

Example: mammography

		Mammography	
		Malignant	Benign
Final diagnosis	Malignant	22	3
	Benign	16	331

Positive predictive value: TP/positive test $=T P /(T P+F P)=22 /(22+16)=0.58$

When the tests are positive for 100 people, 58% really have the condition

False positive rate: $\mathrm{FP} / \mathrm{N}=\mathrm{FP} /(\mathrm{TN}+\mathrm{FP})=16 /(331+16)=0.046$

For 100 people who do not have the condition, 4.6 (or 5) have a false positive test (recall that FPR = 1-specificity, specificity is 95%)

Summary

		Predicted (test result)	
		Positive	Negative
Actual condition	Positive	TP	FN
	Negative	FP	TN

Sensitivity: TP/P
 Specificity: TN/N Positive predictive value PPV: TP/(TP+FP)

A highly sensitive test: if patient has disease, test makes few false negative

Summary

Covid-19 Testing

PCR TEST

A PCR is the most accurate type of Covid-19 test. Test samples are analysed in a lab and the results can take up to 72 hours.

For people WITH symptoms or to confirm a positive lateral flow

- Fever (hot or cold chills)
- Cough
- Loss of taste/smell

Book your PCR test online by visiting www.gov.uk/get-coronavirus-test or by phoning 119.

LATERAL FLOW TEST

A lateral flow is a simple test that can be used at home or at work. It produces a result within 30 minutes.

For people WITHOUT symptoms
This is designed for regular testing, in particular for those who require monitoring for work or school. It is useful for detecting coronavirus before symptoms show.

If you have a cough or a fever, a lateral flow test is NOT sufficient to rule out Covid infection.

Both highly specific (98\% vs 99.8%): if one really doesn't have covid, both tests will give correct result: negative.

For people without symptom (suspect no covid): a negative antigen test is good enough to rule out the disease: and much faster!

RT-PCR is more sensitive than rapid antigen (80% vs 65%): if one has covid, PCR is more likely to give the positive result.

Peopel with symptom (suspecting covid), PCR is better than antigen test to confirm.

Visualization Sensitivity, specificity, PPV

Imagine 10 patients participated in a test.
T- "Test" T+

Condition + Condition -

FN: 1 TP: 4
TN: 4 FP: 1

Sensitivity: $4 / 5=0.8$
Specificity: $4 / 5=0.8$
Positive predictive value: $4 / 5=0.8$

Different 4 and 5 !

Visualization
 Sensitivity, specificity

T- "Test" T+

Change the test threshold

A sensitive test

Rarely misses patients with disease; but can have many false positives

Claim ALL patients test positive: 100\% sensitivity!

A specific test

Rarely gives positive results for healthy people; but might miss patients with disease

Claim ALL patients test negative: 100\% specificity!

ROC Analysis
 Receiver Operator Curve

Limitation of sensitivity and specificity: require a single cut—off value (threshold) to determine true positive result

Depending on different cut-off values, sensitivity and specificity would change.

Would like to compare different values of cut-off, and compare different tests

ROC Analysis
 Receiver Operator Curve

ROC curve: plots pairs of sensitivity and (1-specificy) for a range of cut-off values

Equivant to True Positive Rate vs False Positive Rate

Sensitivity: TP / P
Specificity: TN / N

45 degree line: test is no better than random assignment

ROC Analysis
 Receiver Operator Curve

You can compare different tests (or models) using ROC.

Use AUC: Area Under the Curve (a value between 0 and 1) as an overall metric for the test

The higher AUC is, the better

For example, Model A has AUC 0.761 and model B has AUC 0.584

Model A is better

Prevalence
 Application of Bayes Law

Sensitivity and specificity are not affected by disease prevalence.
Prevalence: positive cases among the total population
Positive predictive value $\operatorname{PPV}(T P / T P+F P)$ is affected by prevalence.

Why do we care about PPV?
You as a doctor have 100 positive test results. You want to know how many are actually really having cancer; how many are just false positives.

Low PPV means \#false positive >> \#true positive

Tests with the same high sensitivity and specificity can have very different PPV, depending on how common the disease is.

Example: HIV testing

We want to test for antibodies of the HIV virus.
A positive test: shows antibodies
A negative test: does not show antibodies

We know that the false positive rate (FPR) is 0.2%, and false negative rate (FNR) is 2%. Assume that the prevalence of HIV in the population is 0.1%.
$F P R=F P / N=F P /(F P+T N)=1-$ specificity
$F N R=F N / P=F N /(F N+T P)=1$ - sensitivity

What is the probability of a person really having HIV, when he is tested positive?

Translate: find PPV: TP/(TP + FP)

Example: HIV testing Method I

Probability of a person really having HIV, when he is tested positive: PPV

Prevalence $=0.1 \%$ i.e. for 100000 persons, 100 are HIV infected (both TP and FN), 99900 are not.

False positive rate $(F P R)=0.2 \%$, i.e. specificity $=99.8 \%$

In 99900 negatives, $\mathrm{TN}=99700, \mathrm{FP}=200$

False negative rate $(F N R)=2 \%$, i.e. sensitivity = 98\%

In 100 positives, $\mathrm{TP}=98, \mathrm{FN}=2$

For 100,000 people		Test result	
	P	N	
Have HIV?	P	98	2
100			
	N	200	99700

PPV = 98/(98+200) = 32.9\%

Prevalence and PPV Visualization

T- "Test" T+

Condition +
Condition -

Sensitivity: $4 / 5=0.8$
Specificity: $4 / 5=0.8$
Positive predictive value: $4 / 5=0.8$

Prevalence and PPV

A "good" test

Prevalence:
\% of positive
(condition, not test)
$100 / 200=0.5$

High sensitivity: 90/100 = 90\%

High specificity: 90/100 = 90\%

High PPV:
90/100 = 90\%
Those with positive test results, 90% do have the condition
\square ㅁㅁ

Prevalence and PPV Same sensitivity and specificity

$\square / \square+\square$
Prevalence: 50\% PPV: 4/5 = 80\%

Prevalence: 25\% PPV: 4/7 = 57\%

Prevalence: 7.6\% PPV: 4/16 = 25\%

3/4 of the test positives are false positives

Prevalence and PPV What about more sensitive and specific tests?

Prevalence and PPV
 Bayes Law

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \text { not } A) P(\text { not } A)}
$$

Prevalence and PPV
 Bayes Law

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \operatorname{not} A) P(\text { not } A)}
$$

$\mathrm{P}($ HIV \mid positive test $)=\frac{\mathrm{P}(\text { positive test } \mid \text { HIV }) \mathrm{P}(\text { HIV })}{\mathrm{P}(\text { positive test })}$
P(positive test|HIV) P(HIV)
P(positive test|HIV) $\mathbf{P (H I V)}+\mathrm{P}$ (positive test|not HIV) P(not HIV)

$$
\mathrm{PPV}=\frac{\text { Sensitivity } \times \text { prevalence }}{\text { Sensitivity } \times \text { prevalence }+(1-\text { specificity }) \times(1-\text { prevalence })}
$$

Prevalence and PPV
 Bayes Law

$$
\begin{aligned}
& \text { PPV }=\frac{\text { Sensitivity } \times \text { prevalence }}{\text { Sensitivity } \times \text { prevalence }+(1-\text { specificity } \times(1-\text { prevalence })} \\
& \text { NPV }=\frac{\text { Specificity } \times \text { (1-prevalence })}{(1-\text { sensitivity) } \times \text { prevalence }+ \text { specificity } \times \text { (1-prevalence })}
\end{aligned}
$$

Example: HIV testing Method II

Prevalence $=0.1 \%$, specificity $=99.8 \%$, sensitivity $=98 \%$

$$
\text { PPV }=\frac{\text { Sensitivity } \times \text { prevalence }}{\text { Sensitivity } \times \text { prevalence }+(1-\text { specificity }) \times(1-\text { prevalence })}
$$

PPV $=(0.98 \times 0.001) /$
$[(0.98 \times 0.001)+(0.002 \times 0.999)]=0.329$

When prev $=0.1 \%, 1 \%, 10 \%$
PPV $=33 \%, 83 \%, 98 \%$

For 100,000 people		Test result	
	P	N	
Have HIV	P	98	2
$\mathrm{PPV}=98 /(98+200)=32.9 \%$			

