Lecture - Day 3 (part 2) Normal distribution

MF9130E V24 2024.04.10

Chi Zhang Oslo Center for Biostatistics and Epidemiology chi.zhang@medisin.uio.no

Random variables Discrete and continuous

Random variable: a quantity that can take random values, with a certain probability

Discrete variables

- coin tossing H,T
- birth boy, girl

Continuous variables

- weight and height
- age

Properties of probability:

Non-negative (0 or above), less than 1, prob of all outcomes sum up to 1.

Histogram and bar plot

X-axis is usually what **values** the variable can be - either a single value, or a range

Y-axis is the **frequency**; or **proportions** (probability) corresponding to that variable value (or range)

Histogram Continuous variable

Probability distribution: relationship between outcome and probability

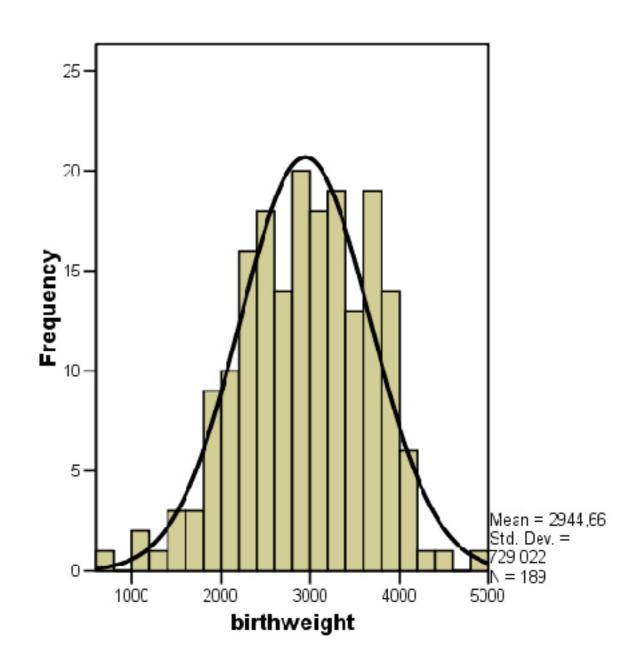
Outcome here is the **measurement (on a continuous scale)**, instead of categories

E.g. Birth weight of 189 newborns 3001, 2918, 3000, 3001,....

How to find the probability? Try counting elements in an interval

- 20 measurement between 2800 and 3000;
- 30 between 3000 and 3200; for example.
- the interval (bin) can be bigger, or smaller

You can get the proportion for each interval by dividing the counts over N

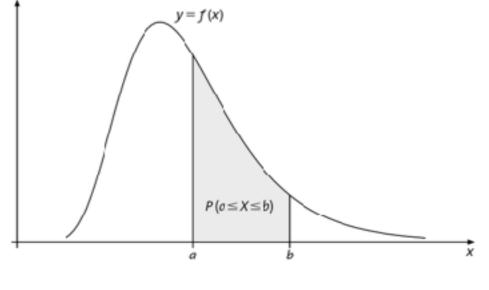


Probability distribution Probability density

A continuous probability distribution is defined by the **probability densitify function** f(x) (a relationship between the measurement x and its **density** at this point)

NOT a probability itself! P(x) = 0. Need integration

The following properties are important $f(x) \ge 0$ The area under the curve in total is 1 $P(a \le X \le b)$ is the **area under the curve** from a to b



Figur 5.1 Sannsynlighetstetthet for en målevariabel

We are usually more interested in the probability of X greater or smaller than a certain value; or between two values.

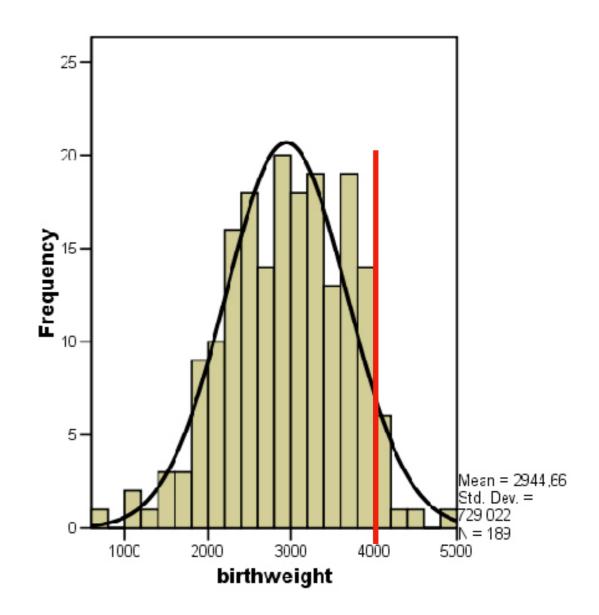
e.g. we care about probability of birth weight between 3000 to 3010, but not equal to 3000 exactly.

Probability distribution Probability density

Birthweight example: N=189

The area under the curve in total is 1 - if you sum all the bars (2 + 3 + 1 + ...) the total is 189 - (the **height** of each bar)

 $P(a \le X \le b)$ is the area under the curve from a to b - $P(2800 \le X \le 3000) = 20/189$ - P(X > 4000) = 9/189

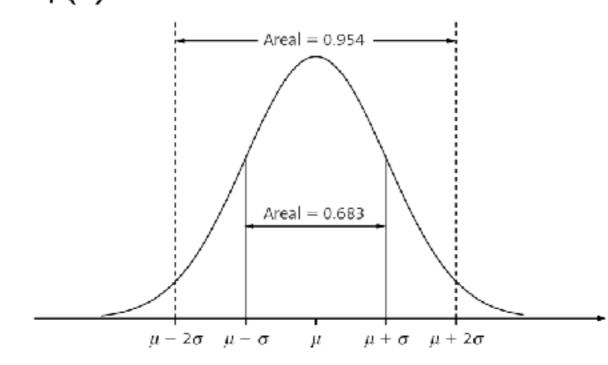


Normal distribution

Probability densifity function of the normal distribution is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

where μ is the mean, σ the standard deviation and $\exp(a) = e^a$



$$X \sim N(\mu, \sigma^2)$$

Read: mu, sigma

Figur 5.4 Tegning av en normalfordeling. Det er avmerket at $\mu \pm \sigma$ dekker 68 %, mens $\mu \pm 2\sigma$ dekker 95 %.

Normal distribution

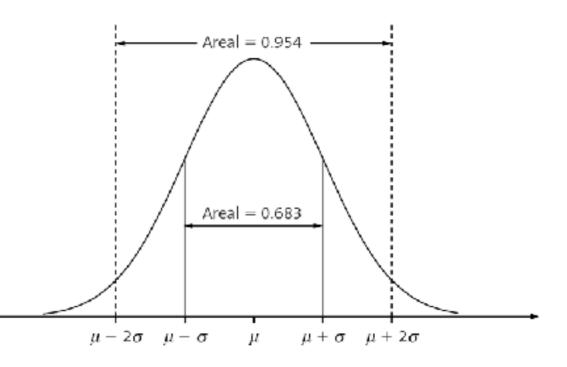
Symmetric, bell shape

Mean defines the location (where it is centered)

SD (sigma) defines the variation, i.e. spread

An interval with center at the mean value, going 2 standard deviation each way covers **approximately 95%** of the distribution

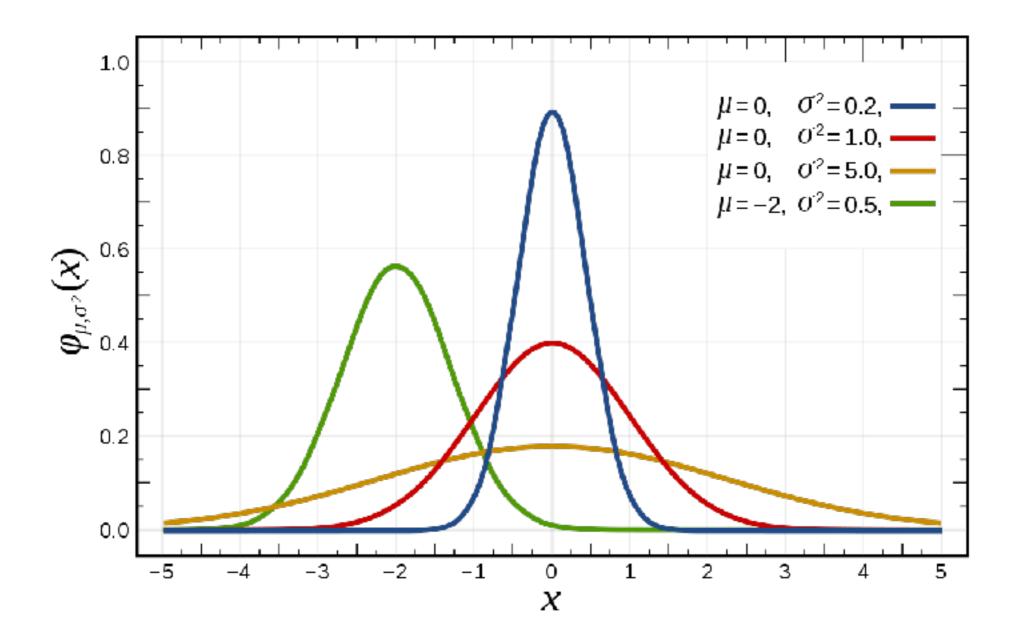
 $X \sim N(\mu, \sigma^2)$



Figur 5.4 Tegning av en normalfordeling. Det er avmerket at $\mu \pm \sigma$ dekker 68 %, mens $\mu \pm 2\sigma$ dekker 95 %.

Normal distribution

Different locations and sd



Standard normal distribution Definition

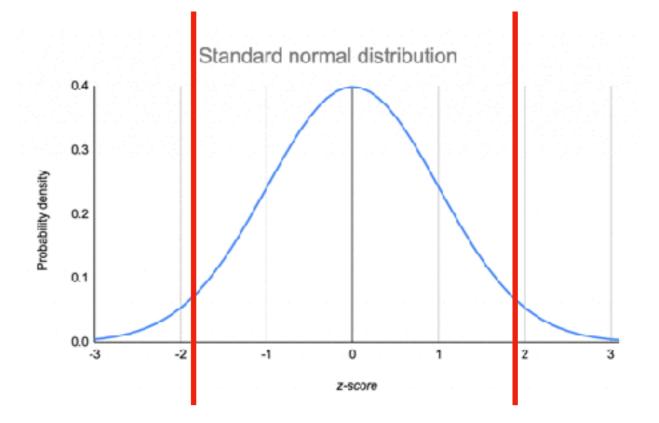
A **standard** normal distribution is a normal distribution with mean 0, variance 1

Noted as N(0, 1)

Any normal distribution can be transformed into a standard normal ...

By substracting the mean, and dividing by the standard deviation

$$X \sim N(\mu, \sigma^2)$$
$$Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$$



-1.96, 1.96 are 2.5% and 97.5% quantile for N(0,1)

Frequently used for computing 95% confidence intervals

Standard normal distribution

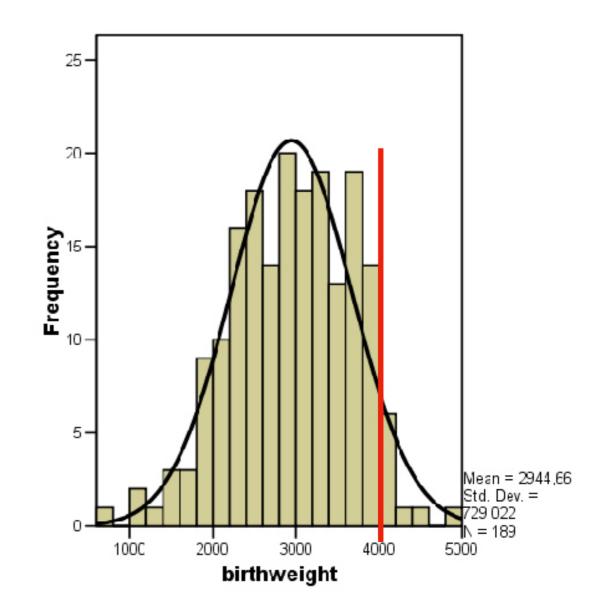
We calculated the 'empirical' probability of weights greater than 4000 by **counting**: P(X > 4000) = 9/189 = 4.7%, approximately

Try using the theoretical distribution (curve)

- mean (mu) = 2945, sd (sigma) = 729
- transform X into Y, which is N(0, 1)
- then find the area for P(Y>y)

P(X>4000)

- = P[(X 2945)/729 > (4000-2945)/729]
- = P[(X 2945)/729 > 1.45]
- = P(Y>1.45)

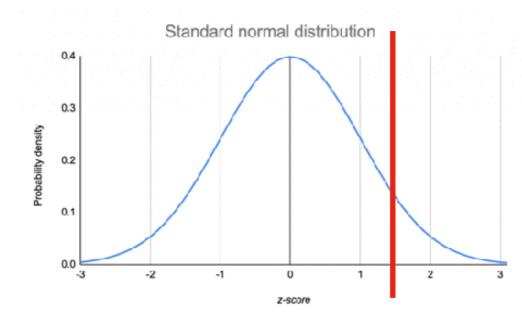


Standard normal distribution

Find P(Y>1.45)

Method I: check a table P(Y>1.45) = **1 - P(Y <=1.45)** = 0.073

Need to be careful what the table shows you, remember complement rule!



Tabell over normalfordelingen

(standardisert til forventning 0 og standardavvik 1) Tabellen gir sannsynligheten $P(Y \le y)$ der Y er standard normalfordelt Eksempel: $P(Y \le 0.23) = 0.5910$ For negative tall kan du bruke: $P(Y \le -y) = 1 - P(Y \le y)$

y	0.00	0.D1	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5473	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	5871	.5910	.5948	.5987	.6026	.6054	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.5368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	6985	.7019	.7054	.7088	.7123	.71.57	.7190	.7224
0.6	7257	.7291	7324	.7357	.7389	.7422	7454	.7486	.7517	7549
0.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8685	.3708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8883	.3907	.8925	.8944	.8962	.8930	.8997	.9015
1.3	.9032	.9049	.9065	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	964	.9649	9655	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	9725	.9732	.9738	.9744	.9750	.9756	.9761	.9757
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9851	.9864	.9863	.9871	.9875	.9878	.9881	.9834	.9887	.9890
2.3	.9893	.9896	.9893	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9954
2.7	.9955	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	998	.9982	9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	9987	.9988	.9988	9989	.9989	.9989	.9990	.9990
3.1	.99990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9995	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.99938
3.5	.9998	.9998	9993	.9998	.9998	.9998	.9998	.9998	.9998	.99938

Standard normal distribution

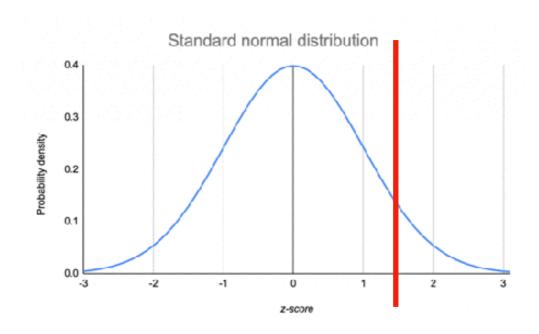
Find P(Y>1.45)

Method II: in R

> pnorm(1.45, 0, 1)
[1] 0.9264707
> 1-pnorm(1.45, 0, 1)
[1] 0.07352926

Method III: in STATA

- . display normal(1.45) .92647074
- . display 1-normal(1.45) .07352926



Central limit theorem CLT

Important conclusion about the mean

Sample mean is normally distributed around the true, **population mean**, with 1 over n times the variance

Regardless of which distribution the population is.

- Binomial
- Poisson
- Uniform
- ...

This also applies for **sum** (n times mean; because mean is sum divided by n).

You will be able to make **inference** with CLT (relevant for confidence interval, t-test and more)

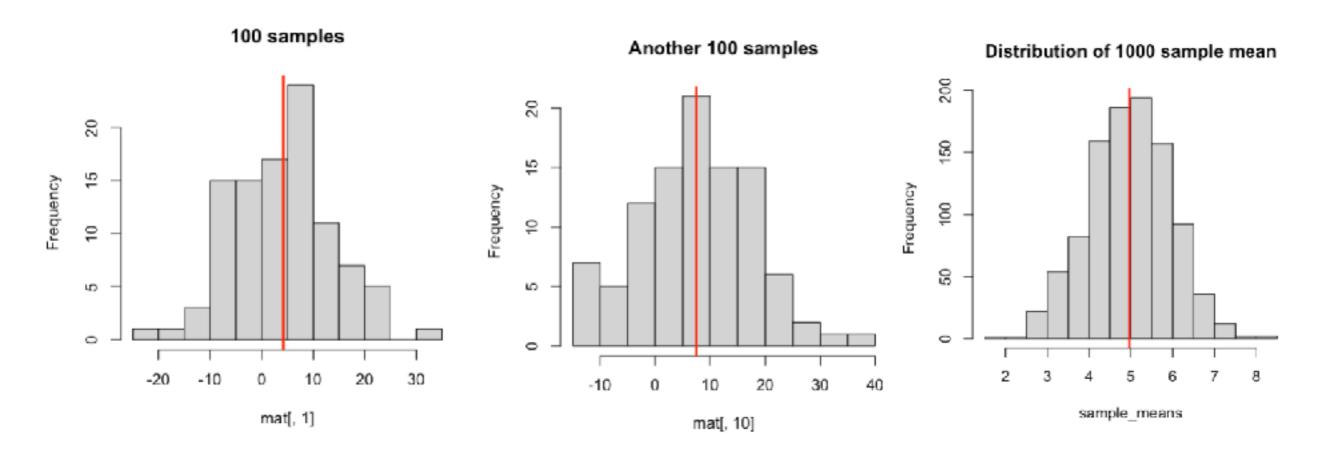
Central limit theorem CLT

Draw 100 random samples with a known theoretical distribution: N(5,100) - centered at 5, with variance 100 (standard deviation 10) Mark their mean with red in figure 1, 2

Repeat the procedure 1000 times, compute 1000 means, plot the sample means

Centered at 5, with variance 100/100 = 1 - a Normal Distribution!

First 100 is the sample size (100 random samples); second 100 is the variance



Central limit theorem CLT

Your data does not need to be normally distributed; it can be any shape

Their sample mean is normally distributed

This result is the foundation for day 3 and day 4, you will see that you can compute the range where your mean can vary!

