Non-parametric tests

MF9130E – Introductory Course in Statistics 08.05.2023

Chi Zhang chi.zhang@medisin.uio.no **Oslo Center for Biostatistics and Epidemiology Department of Biostatistics, UiO**

Outline

8:30-9:15 Exploratory data analysis II

9:30-10:15

Transformations, non-parametric tests

Demontration & Practice

Demonstration in R

Lab notes for today: (under *R Lab and Code* tab)

<u>EDA II</u>

Non-parametric tests

Tranformation

Instead of analysing the original data, x1, x2, ..., analyse **transformed** data instead

Useful when transformed data are closer to a **normal** distribution

Transformation *could* give

- normally distributed data;
- more linear relationship
- more similar variances in different groups

Natural logarithm is commonly used. Denoted as **In**, or simply **log**

 $x_new = log(x)$

```
log(e) = 1, where e = 2.718282
log(exp(x)) = x
log(1) = 0
```

Can make right-skewed data (with large values) closer to normal

Log transformation

Tranformation

Tukey's Ladder of Powers

Power	Transformation	Name
3	y^3	Cubic
2	y^2	Square
1	y (no transformation)	(Original d
1/2	$y^{1/2} = sqrt(y)$	Square ro
	log(y)	Logarithm
-1	1/y	Reciproc
-2	1/(y^2)	Reciprocal s

There are other data transformation: e.g. Box-Cox transformation

Sometimes transformation are not enough. Choose alternative methods!

Non-parametric methods

Parametric methods/tests are based on **probability distributions**, have **parameters**

- Normal distribution: mean and variance;
- binomial distribution: n and p
- student-t and chi-square distribution: degree of freedon

Non-parametric methods/tests do not assume a specific parametric distribution

Signs, ranks are used; most useful for small datasets.

Aalen 8.8, Kirkwood and Sterne 30.2

Non-parametric methods Sign test, Wilcoxon signed rank test for paired samples Wilcoxon rank sum test for two indpendent samples

	We have discussed the confidence interval for mean, and t-test for sample means (paired data, independent data)
	Confidence interval for median
n	Test for paired data: - Sign test - Wilcoxon signed-rank test
	Test for two independent samples: - Mann-Whiteney test / Wilcoxon rank-sum test

You do not need to compute by hand. Use statistical program!

Dataset: length of hospital stay (liggetid)

Data collected at Ullevål hospital; 1139 observations, 21 variables Main outcome of interest: **length of hosptal stay** (liggetid) Here we compare length of stay based on: stroke

(Lab notes: nonparametric teste exercise 2)

-	faar 🍦	fmaan 🍦	fdag 🌐 🌐	innaar 🍦	innmaan 🍦	inndag 🍦	utaar 🗦	utmaan 🌐	utdag 🌐 🌐	kjoenn 🍦	kom_fra 🗦	slag 🗦	alder	liggetid 🗘	Inliggti 🔶	kom_fra2 🗦
327	1909	1	21	1985	11	28	85	12	20	mann	2	0	7	22	3.0910425	1
328	1908	1	16	1985	12	3	85	12	17	kvinne	3	0	7	14	2.6390573	0
329	1902	9	8	1985	12	4	85	12	17	kvinne	1	0	8	13	2.5649494	0
330	1900	1	2	1985	12	5	85	12	16	mann	1	0	8	11	2.3978953	0
331	1911	12	20	1985	12	12	87	3	9	kvinne	2	0	7	452	6.1136822	1
332	1901	9	25	1985	12	13	87	1	22	kvinne	2	0	8	405	6.0038871	1
333	1908	7	29	1985	12	13	85	12	19	kvinne	2	0	7	6	1.7917595	1
334	1906	4	8	1985	12	20	87	1	1	kvinne	2	0	7	377	5.9322452	1
335	1893	2	10	1985	12	23	87	1	21	kvinne	1	0	9)	394	5.9763509	0
336	1899	10	4	1986	1	3	86	1	29	mann	4	NA	8	26	3.2580965	0
337	1893	12	23	1986	1	3	86	9	3	kvinne	2	NA	9	243	5.4930614	1
338	1911	4	6	1986	1	3	86	2	3	kvinne	1	NA	7	31	3.4339872	0
339	1908	8	21	1986	1	3	86	3	19	kvinne	1	NA	7	75	4.3174881	0
340	1906	12	14	1986	1	7	86	4	2	kvinne	6	NA	8	85	4.4426513	0
341	1913	10	26	1986	1	9	86	4	7	kvinne	2	NA	7	88	4.4773368	1
342	1908	3	28	1986	1	9	86	3	14	kvinne	2	NA	7	64	4.1588831	1
343	1905	9	17	1986	1	10	86	2	12	kvinne	5	NA	8	33	3.4965076	0
344	1903	6	23	1986	1	10	86	1	17	mann	4	NA	8	7	1.9459101	0
345	1895	2	12	1986	1	14	86	1	17	kvinne	1	NA	9	3	1.0986123	0
346	1907	2	4	1986	1	14	86	4	1	kvinne	2	NA	7	77	4.3438054	1
347	1909	9	4	1986	1	15	86	3	5	kvinne	2	NA	7	49	3.8918203	1

Confidence interval for median

What is the **median** and 95% confidence interval for length of stay (liggetid)? How does it compare to **mean** and 95% CI?

The lower and upper 95% confidence limits are the

 $\frac{n}{2} - 1.96 \frac{\sqrt{n}}{2}$ and $1 + \frac{n}{2} + 1.96 \frac{\sqrt{n}}{2}$ -th ranked values

Histogram for length of stay

Mean: 121.46; median: 42

```
> n
[1] 1139
> lwr_rank <- n/2 - 1.96*(sqrt(n)/2)
> upr_rank <- 1 + n/2 + 1.96*(sqrt(n)/2)
> c(lwr_rank, upr_rank)
[1] 536.4259 603.5741
> c(quantile(los, lwr_rank/n), quantile(los, upr_rank/n))
47.09622% 52.99158%
       38
                 46
> # from package:
> # install.packages('DescTools')
> DescTools::MedianCI(los, conf.level = 0.95)
median lwr.ci upr.ci
    42
           38
                  46
attr(,"conf.level")
[1] 0.956129
```

n=1139 536-th ranked value (47-th percentile): 38 603-th ranked value (52-th percentile): 42 Recall that median is 50th percentile: half data greater than median, half smaller!

Tests to compare 2 groups (continuous)

	Normal distributed	Not Normal dis
One sample / Paired samples	One-sample t-test Paired-sample t-test	Sign tea Wilcoxon signed
Two independent samples	Two-sample t-test	Mann-Whitr Wilcoxon rank-
Three + samples	ANOVA (not in this course)	Kruskal-Wallis (course

istributed st; d-rank test ney U / sum test (not in this e)

t.test(x1, x2, paired = T)
t.test(x, y, paired = F)
wilcox.test(x1, x2, paired = T)
wilcox.test(x, y, paired = F)

Rank based methods (intuition)

(Without going into too much technical details: we focus more on selecting the right method rather than computation)

Subj	Pre	Post	Difference	Sign	Rank
1	5260	3910	1350	+	6
2	5470	4220	1250	+	4
3	5640	3885	1755	+	10
4	6180	5160	1020	+	3
5	6390	5645	745	+	2
6	6515	4680	1835	+	11
7	6805	5265	1540	+	8.5
8	7515	5975	1540	+	8.5
9	7515	6790	725	+	1
10	8230	6900	1330	+	5
11	8770	7335	1435	+	7

Compare pre vs post values. **Paired samples** (pre and post on the same subject)

Compute the difference: pre - post

Null hypothesis: no difference pre vs post.

Sign test: how likely are all 11 differences turn out positive, when we assume no difference?

Wilcoxon signed rank test: compare positive ranks and negative ranks non-parametric counterpart of **paired t-test**

Tedious to compute by hand: use R!

Rank based methods (intuition)

Group 1: 1.3, 1.5, 2.1, 3.2, 4.3 Group 2: 3.4, 4.9, 6.3, 7.1 Test if the two groups are different

Group 1 Group 2 Rank 1.3 2 1.5 2.1 3 3.2 4 3.4 5 4.3 6 4.9 7 6.3 8 7.1 9 Rank sum: 16 Rank sum: 29

- Mann-Whitney / Wilcoxon rank sum test
- **Two independent samples**: compare n1 measurements from one group, with n2 measurements from another group
- It is the non-parametric counterpart of **two-sample t-test**
- H0: the distributions of both groups are equal
- Test for equal medians, when two distributions can be assumed to be identical form

Length of stay data

Check the distribution of los (length of stay) Right skewed; far from normal

Length of hospital stay, stroke no

Length of hospital stay, stroke yes

mean: 116; median: 40

Q-Q plot for length of stay, stroke yes

Theoretical Quantiles

Q-Q plot for length of stay, stroke no

Length of stay data t-test vs Wilcoxon rank sum test

Similar to t-test, we need to know whether the samples are paired or not.

How do you know this?

(Here we have independent samples: different patients!)

Do a Wilcoxon rank sum test and t-test on the skewed data: notice the different conclusions

non parametric test
not matched; independent samples
wilcoxon rank sum
wilcox.test(ligt_s1, ligt_s0)

Wilcoxon rank sum test with continuity correction

data: ligt_s1 and ligt_s0
W = 84060, p-value = 0.001361
alternative hypothesis: true location shift is not equal to 0

```
# t-test on skewed data
t.test(ligt_s1, ligt_s0)
```

Welch Two Sample t-test

```
data: ligt_s1 and ligt_s0
t = 1.5847, df = 220.8, p-value = 0.1145
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -6.879646 63.359853
sample estimates:
mean of x mean of y
145.0123 116.7722
```

Length of stay data: log transform

Now we try to repeat the same comparison, but on log-transformed length of stay data (Inliggti) Here log-transformed data is already provided; if not, you can compute it by exp(liggetid)

(The interpretation will be different)

-	faar 🗦	fmaan 🍦	fdag 🍦	innaar 🍦	innmaan 🍦	inndag 🍦	utaar 🍦	utmaan 🗦	utdag 🍦	kjoenn 🗘	kom_fra 🍦	slag 🍦	alder 🔶	liggetid 🗦	Inliggti 🚊 I	om_fra2 🔅
327	1909	1	21	1985	11	28	85	12	20	mann	2	0	76	22	3.0910425	1
328	1908	1	16	1985	12	3	85	12	17	kvinne	3	0	77	14	2.6390573	0
329	1902	9	8	1985	12	4	85	12	17	kvinne	1	0	83	13	2.5649494	0
330	1900	1	2	1985	12	5	85	12	16	mann	1	0	85	11	2.3978953	0
331	1911	12	20	1985	12	12	87	3	9	kvinne	2	0	74	452	6.1136822	1
332	1901	9	25	1985	12	13	87	1	22	kvinne	2	0	84	405	6.0038871	1
333	1908	7	29	1985	12	13	85	12	19	kvinne	2	0	77	6	1.7917595	1
334	1906	4	8	1985	12	20	87	1	1	kvinne	2	0	79	377	5.9322452	1
335	1893	2	10	1985	12	23	87	1	21	kvinne	1	0	92	394	5.9763509	0
336	1899	10	4	1986	1	3	86	1	29	mann	4	NA	87	26	3.2580965	0
337	1893	12	23	1986	1	3	86	9	3	kvinne	2	NA	93	243	5.4930614	1
338	1911	4	6	1986	1	3	86	2	3	kvinne	1	NA	75	31	3.4339872	0
339	1908	8	21	1986	1	3	86	3	19	kvinne	1	NA	78	75	4.3174881	0
340	1906	12	14	1986	1	7	86	4	2	kvinne	6	NA	80	85	4.4426513	0
341	1913	10	26	1986	1	9	86	4	7	kvinne	2	NA	73	88	4.4773368	1
342	1908	3	28	1986	1	9	86	3	14	kvinne	2	NA	78	64	4.1588831	1
343	1905	9	17	1986	1	10	86	2	12	kvinne	5	NA	81	33	3.4965076	0
344	1903	6	23	1986	1	10	86	1	17	mann	4	NA	83	7	1.9459101	0
345	1895	2	12	1986	1	14	86	1	17	kvinne	1	NA	91	3	1.0986123	0
346	1907	2	4	1986	1	14	86	4	1	kvinne	2	NA	79	77	4.3438054	1
347	1909	9	4	1986	1	15	86	3	5	kvinne	2	NA	77	49	3.8918203	1

Length of stay data: log transform

Log transformed length of stay

Theoretical Quantiles

```
# separate data
```

```
logligt_s1 <- loglos[which(!is.na(stroke) & stroke == 1)]
logligt_s0 <- loglos[which(!is.na(stroke) & stroke == 0)]</pre>
```

```
t.test(logligt_s1, logligt_s0, paired = F)
```

Welch Two Sample t-test

```
data: logligt_s1 and logligt_s0
t = 3.4218, df = 237.88, p-value = 0.0007321
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.1587474 0.5895572
sample estimates:
mean of x mean of y
    4.180085 3.805933
```

Antibody data (Exercise 3)

20 samples: before and after measurements -> paired data

A report summarized the results as **t** = **1.8**, **p>0.05**

Is it the correct conclusion?

Do some exploratory analysis, and reproduce the result from the t-test.

*	before $\ ^{\diamond}$	after 🗦
1	0.4	0.4
2	0.4	0.5
3	0.4	0.5
4	0.4	0.9
5	0.5	0.5
6	0.5	0.5
7	0.5	0.5
8	0.5	0.5
9	0.5	0.5
10	0.6	0.6
11	0.6	12.2
12	0.7	1.1
13	0.7	1.2
14	0.8	0.8
15	0.9	1.2
16	0.9	1.9
17	1.0	0.9
18	1.0	2.0
19	1.6	8.1
20	2.0	3.7

Antibody data (Exercise 3)

Box plot: before and after suggests difference in distributions

Histogram and QQplot indicates non-normality

Measurements: before

Q-Q plot for measurements: before

before

Theoretical Quantiles

after

Q-Q plot for measurements: after

Theoretical Quantiles

Antibody data (Exercise 3)

reproduce the result from t-test
t.test(antibody\$before, antibody\$after, paired = T)

Paired t-test

```
data: antibody$before and antibody$after
t = -1.8498, df = 19, p-value = 0.07996
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-2.5151563 0.1551563
sample estimates:
mean difference
-1.18
```

```
# what happens if you use independent two-samples test?
wilcox.test(before, after, paired = F) # p = 0.14
```

Warning in wilcox.test.default(before, after, paired = F): cannot compute exact p-value with ties

Wilcoxon rank sum test with continuity correction

```
data: before and after
W = 146.5, p-value = 0.1454
alternative hypothesis: true location shift is not equal to 0
```

```
# matched data (paired)
# one-sample test (signed rank)
```

```
wilcox.test(before, after, paired = T)
```

```
Warning in wilcox.test.default(before, after, paired = T): cannot compute exact p-value with ties
```

```
Warning in wilcox.test.default(before, after, paired = T): cannot compute exact p-value with zeroes
```

Wilcoxon signed rank test with continuity correction

```
data: before and after
V = 2, p-value = 0.00412
alternative hypothesis: true location shift is not equal to 0
```

Be careful with what test you use!

```
Do EDA and plot your data!
```