Regression analysis II

1. Multiple linear regression
2. Confounding, interactions

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO
valeria.vitelli@medisin.uio.no

MF9130E - Introductory Course in Statistics
24.04.2024

Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11 and 12

1. Morning: Regression II

- Introduction to Multiple linear regression (briefly: multiple regression)
- More details on linear regression models: confounding, interactions

2. Afternoon: Regression III

- categorical covariates with more than 2 levels
- Multiple regression assumptions, leverage effect
- To explain, to predict or to describe? How the purpose of the analysis decides what is important

Schedule for today

08.30-10.15: Regression analysis II: multiple regression, confounding, interaction effects
10.15-11.15: R exercise for regression II
11.15-11.45: Discussion of the R exercise for regression II in class

- LUNCH
12.45-14.00: Regression analysis III: Multiple regression (continued), categorical variables, assumptions, leverage effect.
To explain, to predict or to describe?
14.00-15.00: R exercise for regression III
15.00-15.30: Discussion of the R exercises for regression III in class
15.30-16.00: Course Summary

Yesterday: Simple linear regression

A simple linear regression describes the relationship between 1 independent variable (covariate, or predictor) and the dependent variable (response variable, or outcome) via a line.
Toy example: association between FEV1 and height. Estimated regression line:

$$
\begin{equation*}
\text { FEV1 } \approx-9.19+0.07 \cdot \text { height } \tag{1}
\end{equation*}
$$

Relationship between simple linear regression and t-test

- There is a connection between the two approaches:
- Student's t-test (with equal variances) for the difference in the population mean between two independent groups is equivalent to a simple linear regression with the grouping as predictor variable.

Let us see this in a toy example:

	Lean $(n=13)$	Obese $(n=9)$
	6.13	8.79
	7.05	9.19
	7.48	9.21
	7.48	9.68
	7.53	9.69
	7.58	9.97
	7.90	11.51
	8.08	11.85
	8.09	12.79
	8.11	
	8.40	
	10.15	
	10.88	
Mean	8.066	10.298
SD	1.238	1.398

R output for the t-test

R output for the Student's t-test (with equal variances) for the difference in energy between the lean and obese:

```
> t.test(energy ~ group, data=energy, var.equal=TRUE)
    Two Sample t-test
data: energy by group
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means between group Lean and group Obese is not equal to 0
95 percent confidence interval:
    -3.411451 -1.051796
sample estimates:
mean in group Lean mean in group Obese
    8.066154 10.297778
```


R output for the simple linear regression

```
> fit <- lm(energy ~ group, data=energy)
> summary(fit)
Call:
lm(formula = energy ~ group, data = energy)
Residuals:
    Min 1Q Median 3Q Max
-1.9362 -0.6153-0.4070 0.2614 2.8138
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.0662 0.3618 22.297 1.34e-15 ***
groupObese 2.2316 0.5656 3.946 0.000799
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.304 on 20 degrees of freedom
Multiple R-squared: 0.4377, Adjusted R-squared: 0.4096
F-statistic: 15.57 on 1 and 20 DF, p-value: 0.000799
```


Multiple regression

- Is an extension of the simple linear regression with one independent variable (predictor / covariate)
- Still a continuous response (dependent) variable, but several explanatory (independent) variables (multiple predictors / covariates)
- The independent variables can be continuous, dichotomous or have more than two categories
- The multiple linear regression model is defined as

$$
Y=b_{0}+b_{1} x_{1}+\cdots+b_{p} x_{p}
$$

Regression coefficients

$$
Y=b_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}
$$

- b_{1}, \ldots, b_{n} are called regression coefficients
- b_{i} can be interpreted as the effect of one unit increase of the variable x_{i} when the other variables remain unchanged
- also called adjusted effect
- Not necessarily a causal effect

Interpretation

Regression with two independent variables:

- Geometrically this corresponds to viewing data as points in a high-dimensional space.
- Beyond three dimensions we cannot picture such a space, but mathematically there is no difficulty with high-dimensional spaces.

Mean PEF by height and weight for 95 students

Multiple regression via a toy example

Example: data on systolic blood pressure

Description	Name
Id	Id
Systolic blood pressure	SBP
Quetelet index (BMI)	QUET
Age	AGE
Smoking status	SMK

Simple linear regression: SBP vs AGE

```
> fit <- lm(SBP ~ AGE, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ AGE, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-15.548 & -6.990 & -2.481 & 5.765 & 23.892
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.0916 12.8163 4.611 6.98e-05 ***
AGE 1.6045 0.2387 6.721 1.89e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.245 on 30 degrees of freedom
Multiple R-squared: 0.6009, Adjusted R-squared: 0.5876
F-statistic: 45.18 on 1 and 30 DF, p-value: 1.894e-07
```

- Note that $\hat{b}_{0}=59.09$ and $\hat{b}_{1}=1.61$,
- Confidence interval for $b_{1}(1.12,2.09)$ (calculate in R with confint())
- $H_{0}: b_{1}=0$ is rejected, as $p<0.001$.
- SBP increases 1.6 units for each year.

Simple linear regression: SBP vs Age

```
> plot(SBP ~ AGE, data=bloodpressure)
> abline(reg=fit, col="red")
```


Simple linear regression: SBP vs QUET

```
> fit <- lm(SBP ~ QUET, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-19.231 & -7.145 & -1.604 & 7.798 & 22.531
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(> |t|)
(Intercept) 70.576 12.322 5.728 2.99e-06 ***
QUET 21.492 3.545 6.062 1.17e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 9.812 on 30 degrees of freedom
Multiple R-squared: 0.5506, Adjusted R-squared: 0.5356
F-statistic: 36.75 on 1 and 30 DF, p-value: 1.172e-06
```

- Note that $\hat{b}_{0}=70.58$ and $\hat{b}_{1}=21.49$,
- Confidence interval for $b_{1}(14.25,28.73)$ (calculate in R with confint())
- $H_{0}: b_{1}=0$ is rejected, as $p<0.001$.
- SBP increases 21.49 units for each unit of QUET.

Simple linear regression: SBP vs QUET

```
> plot(SBP ~ QUET, data=bloodpressure)
> abline(reg=fit, col="red")
```


Multiple regression: Combining AGE and QUET

```
> fit <- lm(SBP ~ QUET + AGE, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET + AGE, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-11.667 & -6.793 & -2.732 & 5.318 & 19.600
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.3234 12.5347 4.414 0.000129 ***
QUET 9.7507 5.4025 1.805 0.081489 .
AGE 1.0452 0.3861 2.707 0.011253 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 8.916 on 29 degrees of freedom
Multiple R-squared: 0.6412, Adjusted R-squared: 0.6165
F-statistic: 25.92 on 2 and 29 DF, p-value: 3.505e-07
```

- QUET does not have a significant effect on SBP, when adjusting for AGE,
- When AGE increases, then SBP will increase with 1.045 units,
- This is a significant increase ($p=0.01$), confidence interval $(0.26,1.84)$ (calculate in R with confint()).

Confounding

What did we learn from the two previous models?

- Adjustment for AGE leads to a weaker relationship between SBP and QUET.
- AGE is associated with both SBP and QUET, and affects the association between them.

This implies that AGE is a confounding variable.

Confounders (more on this topic tomorrow)

Definition

A confounder is a variable that is a common cause of the exposure and the response (disease), and NOT an effect of the exposure or the disease.

- Confounding variables are important when we want to estimate (causal) effects from various exposures.
- As they cause both the exposure and the response, they are likely to cause biases.
- They can be dealt with by adjusting in a multiple regression model: always adjust for potential confounders by including them in the regression model!
- Multivariate regression models are thus important to include potential relevant variables.
- Be careful not to include common effects (also called colliders).

Simple linear regression: SBP vs SMK

```
> fit <- lm(SBP ~ SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ SMK, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-21.824 & -9.056 & -2.812 & 11.200 & 32.176
\end{tabular}
Coefficients:
```



```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 14.18 on 30 degrees of freedom
Multiple R-squared: 0.06117, Adjusted R-squared: 0.02988
F-statistic: 1.955 on 1 and 30 DF, p-value: 0.1723
```

- Note that $\hat{b}_{0}=140.80$ and $\hat{b}_{1}=7.02$,
- Confidence interval for $b_{1}(-3.24,17.28)$ (calculate in R with confint())
- $H_{0}: b_{1}=0$ is not rejected, as $p=0.17$,
- Average difference between the two groups is 7.02 .

Simple linear regression: SBP vs SMK

```
> plot(SBP ~ SMK, data=bloodpressure)
> abline(reg=fit, col="red")
```


Multiple regression: Combining AGE, QUET and SMK

```
> fit <- lm(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)
Residuals:
    Min
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1032 10.7649 4.190 0.000252 ***
QUET 8.5924 4.4987 1.910 0.066427 .
AGE 1.2127 0.3238 3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: 0.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
```

- Both AGE and SMK have significant effects,
- When AGE increases 1 unit, SBP increases with 1.2 units,
- Confidence interval: $(0.55,1.88), p=0.001$,
- Smokers have 10 units higher SBP than non-smokers, confidence interval $(4.5,15.4), p=0.001$.

Removing QUET from the model

```
> fit <- lm(SBP ~ AGE + SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ AGE + SMK, data = bloodpressure)
Residuals:
    Min
Coefficients:
    Estimate Std. Error t value Pr(> |t|)
(Intercept) 48.0496 11.1296 4.317 0.000168
AGE 1.7092 0.2018 8.471 2.47e-09 ***
SMK 10.2944 2.7681 3.719 0.000853 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.738 on 29 degrees of freedom
Multiple R-squared: 0.7298, Adjusted R-squared: 0.7112
F-statistic: 39.16 on 2 and 29 DF, p-value: 5.746e-09
```

- Both AGE and SMK still have significant effects.
- Removing QUET lead to a slight decrease in the R^{2} : we might consider keeping it.

Closer look at the effect of AGE and SMK

$$
\mathrm{SBP}=48.05+1.71 \cdot \mathrm{AGE}+10.29 \cdot \mathrm{SMK}
$$

- One year increase in age yields an increase of SBP 1.71 units,
- Non-smokers model: SBP $=48.05+1.71 \cdot$ AGE
- Smokers model: SBP $=58.34+1.71 \cdot$ AGE

- The effect on SBP of the increase in AGE is the same regardless if one is a smoker or not. Is this realistic?

Closer look at the effect of AGE and SMK

$$
\mathrm{SBP}=48.05+1.71 \cdot \mathrm{AGE}+10.29 \cdot \mathrm{SMK}
$$

- One year increase in age yields an increase of SBP 1.71 units,
- Non-smokers model: SBP $=48.05+1.71 \cdot$ AGE
- Smokers model: $\mathrm{SBP}=58.34+1.71 \cdot \mathrm{AGE}$

- The effect on SBP of the increase in AGE is the same regardless if one is a smoker or not. Is this realistic?
- NO \rightarrow In reality, the effect of age could be larger for smokers.

Interaction between two explanatory variables

- If the effect of one variable might depend on another variable,
- we have to build a common model for main effects as well as interactions:

$$
\mathrm{SBP}=b_{0}+b_{1} \cdot \mathrm{AGE}+b_{2} \cdot \mathrm{SMK}+b_{3} \cdot \mathrm{AGE} \cdot \mathrm{SMK}
$$

- This is easily done in R with either the "*" or ":" operators:

```
lm(SBP ~ AGE*SMK, data=bloodpressure)
or
lm(SBP ~ AGE + SMK + AGE:SMK, data=bloodpressure)
```


Interaction between two explanatory variables

```
> fit <- lm(SBP ~ AGE*SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ AGE * SMK, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-11.036 & -4.961 & -1.958 & 5.552 & 20.665
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(> }\operatorname{Pr|
(Intercept) 58.5743 14.8048 3.956 0.000472 ***
AGE 1.5152 0.2703 5.605 5.32e-06 ***
SMK -12.8460 21.7153 -0.592 0.558888
AGE:SMK 0.4349 0.4048 1.074 0.291840
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 7.717 on 28 degrees of freedom
Multiple R-squared: 0.7405, Adjusted R-squared: 0.7127
F-statistic: 26.63 on 3 and 28 DF, p-value: 2.369e-08
```

- Note that the interaction term is not significant, so we may drop this from the model if there are no particular biological/clinical reasons for keeping it,

Interpretation

For the non-smokers $(S M K=0)$:

$$
\begin{aligned}
\mathrm{SBP} & =\hat{b}_{0}+\hat{b}_{1} \cdot \mathrm{AGE}+\hat{b}_{2} \cdot 0+\hat{b}_{3} \cdot \mathrm{AGE} \cdot 0 \\
& =58.57+1.52 \cdot \mathrm{AGE}
\end{aligned}
$$

For the smokers $(\mathrm{SMK}=1)$:

$$
\begin{aligned}
\mathrm{SBP} & =\hat{b}_{0}+\hat{b}_{1} \cdot \mathrm{AGE}+\hat{b}_{2} \cdot 1+\hat{b}_{3} \cdot \mathrm{AGE} \cdot 1 \\
& =45.72+1.96 \cdot \mathrm{AGE}
\end{aligned}
$$

Other possible interactions

```
> fit <- lm(SBP ~ QUET*SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET * SMK, data = bloodpressure)
Residuals:
\begin{tabular}{llll} 
Min & 1Q Median 3Q Max
\end{tabular}
-22.3713 -5.5705 -0.6357 7.4972 17.1051
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.312 19.972 2.469 0.0199 *
QUET 26.303 5.703 4.612 8.01e-05 ***
SMK 29.944 24.164 1.239
QUET:SMK 
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.948 on 28 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6137
F-statistic: 17.42 on 3 and 28 DF, p-value: 1.408e-06
```


Other possible interactions

```
> fit <- lm(SBP ~ QUET*AGE, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET * AGE, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-13.385 & -6.208 & -2.284 & 6.243 & 21.926
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 207.3696 86.3654 2.401 0.0232 *
QUET -34.1170 25.2168 -1.353 0.1869
AGE -1.8468 1.6686 -1.107 0.2778
QUET:AGE 0.8224 0.4625 1.778 0.0863 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.601 on 28 degrees of freedom
Multiple R-squared: 0.6776, Adjusted R-squared: 0.6431
F-statistic: 19.62 on 3 and 28 DF, p-value: 4.742e-07
```


Model selection

- None of these interactions had significant effects, so in the light of a parsimony criterion (so to save degrees of freedom) we will skip the interactions in the final model.
- Automatic model selection is possible, but hard to use in practice.
- Models motivated by causal interpretations should be based on subject matter knowledge, not just an algorithm.

Final multiple regression model

No significant interactions, so we end up with the following model:

$$
\mathrm{SBP}=b_{0}+b_{1} \cdot \mathrm{AGE}+b_{2} \cdot \mathrm{QUET}+b_{3} \cdot \mathrm{SMK}
$$

```
> fit <- lm(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)
Call:
lm(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-13.5420 & -6.1812 & -0.7282 & 5.2908 & 15.7050
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1032 10.7649 4.190 0.000252 ***
QUET 8.5924 4.4987 1.910 0.066427 .
AGE 1.2127 0.3238 3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: 0.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
```


Interaction Effects

- Interaction means that the effect of a variable depends on a second variable,
- Not the same a confounding variable,
- Multivariate regression enables us to analyze interaction effects,
- We often need large data sets to get significant interaction effects.
- A variable Z that has an interaction effect on variable X is sometimes called an effect modifier of X.

Summary

Key words

- Multiple linear regression
- Confounder / collider (more tomorrow)
- Interaction effects

