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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12

1. Morning: Regression Il

» Introduction to Multiple linear regression (briefly: multiple
regression)

» More details on linear regression models: confounding,
interactions

2. Afternoon: Regression Ill
» categorical covariates with more than 2 levels
» Multiple regression assumptions, leverage effect
» To explain, to predict or to describe? How the purpose of the
analysis decides what is important
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Schedule for today

08.30-10.15:

10.15-11.15:
11.15-11.45:

>

12.45-14.00:

14.00-15.00:
15.00-15.30:
15.30-16.00:

Regression analysis Il: multiple regression, confounding,
interaction effects

R exercise for regression Il

Discussion of the R exercise for regression Il in class
LUNCH

Regression analysis I1l: Multiple regression (continued),
categorical variables, assumptions, leverage effect.
To explain, to predict or to describe?

R exercise for regression Il
Discussion of the R exercises for regression Il in class

Course Summary
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Yesterday: Simple linear regression

A simple linear regression describes the relationship between 1
independent variable (covariate, or predictor) and the dependent
variable (response variable, or outcome) via a line.

Toy example: association between FEV1 and height.
Estimated regression line:

FEV1 ~ —9.19 4 0.07 - height (1)

FEV1

HEIGHT
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Relationship between simple linear regression and t-test
» There is a connection between the two approaches:
» Student’s t-test (with equal variances) for the difference in the
population mean between two independent groups is

equivalent to a simple linear regression with the grouping as
predictor variable.

Let us see this in a toy example:

Table 9.4 24 hour total energy expenditure (MJ/day)
in groups of lean and obese women (Prentice ef al.,
1986)

Lean Obese

(m = 13) (n=19)
6.13 870
708 919
T48 9.21
748 X
753 D6
T.58 9.97
700 11.51
B.08 11.8%
B0 12.79
811
§.40
10.15
10.88
Mean 8.066 10.298
sD 1.238 1.398
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R output for the t-test

R output for the Student’s t-test (with equal variances) for the
difference in energy between the lean and obese:

> t.test(energy ~ group, data=energy, var.equal=TRUE)
Two Sample t-test

data: energy by group
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means between group Lean and group Obese is not equal to @
95 percent confidence interval:
-3.411451 -1.051796
sample estimates:
mean in group Lean mean in group Obese
8.066154 10.297778
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R output for the simple linear regression

> fit <- 1m(energy ~ group, data=energy)
> summary(fit)

Call:
Im(formula = energy ~ group, data = energy)

Residuals:
Min 1Q Median 3Q Max
-1.9362 -0.6153 -0.4070 0.2614 2.8138

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 8.0662 0.3618 22.297 1.34e-15 ***
groupObese 2.2316 0.5656 3.946 0.000799 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.304 on 2@ degrees of freedom
Multiple R-squared: ©.4377, Adjusted R-squared: 0.4096
F-statistic: 15.57 on 1 and 20 DF, p-value: 0.000799
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Multiple regression

» s an extension of the simple linear regression with one
independent variable (predictor / covariate)

» Still a continuous response (dependent) variable, but several
explanatory (independent) variables (multiple predictors /
covariates)

» The independent variables can be continuous, dichotomous or
have more than two categories

» The multiple linear regression model is defined as

Y =bo+biz1+ -+ bpxp
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Regression coefficients

Y =by+bix1+ -+ bpxy

» by,...,b, are called regression coefficients

P> b; can be interpreted as the effect of one unit increase of the
variable z; when the other variables remain unchanged

» also called adjusted effect

» Not necessarily a causal effect
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Interpretation

Regression with two
independent variables:

» Geometrically this corresponds to
viewing data as points in a
high-dimensional space.

» Beyond three dimensions we cannot
picture such a space, but
mathematically there is no difficulty
with high-dimensional spaces.
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Mean PEF by height and weight for 95

students R
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Multiple regression via a toy example

Example: data on systolic blood pressure

Description Name
Id Id
Systolic blood pressure SBP
Quetelet index (BMI)  QUET
Age AGE
Smoking status SMK

13/34



Simple linear

regression: SBP vs AGE

> fit <- 1m(SBP ~ AGE, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-15.548 -6.990 -2.481 5.765 23.892

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 59.0916 12.8163 4.611 6.98e-05 ***
AGE 1.6045 0.2387 6.721 1.89e-07 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ‘> 1

Residual standard error: 9.245 on 30 degrees of freedom
Multiple R-squared: 0.6009, Adjusted R-squared: 0.5876
F-statistic: 45.18 on 1 and 30 DF, p-value: 1.894e-07

» Note that by = 59.09 and b; = 1.61,

» Confidence interval for by (1.12,2.09) (calculate in R with

confint())
> Hj: by =0 is rejected, as p < 0.001.
» SBP increases 1.6 units for each year.
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Simple linear regression: SBP vs Age

> plot(SBP ~ AGE, data=bloodpressure)
> abline(reg=fit, col="red")
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Simple linear regression: SBP vs QUET

> fit <- 1m(SBP ~ QUET, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-19.231 -7.145 -1.604 7.798 22.531

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 70.576 12.322 5.728 2.99%e-06 ***
QUET 21.492 3.545 6.062 1.17e-06 ***

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 9.812 on 3@ degrees of freedom

Multiple R-squared: 0.5506, Adjusted R-squared: 0.5356
F-statistic: 36.75 on 1 and 30 DF, p-value: 1.172e-06

> Note that by = 70.58 and by = 21.49,

» Confidence interval for by (14.25,28.73) (calculate in R with
confint())

» Hy:b; =0 is rejected, as p < 0.001.

» SBP increases 21.49 units for each unit of QUET.
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Simple linear regression: SBP vs QUET

>
>

plot(SBP ~ QUET, data=bloodpressure)
abline(reg=fit, col="red")
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Multiple regression: Combining AGE and QUET

> fit <- 1m(SBP ~ QUET + AGE, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-11.667 -6.793 -2.732 5.318 19.600

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 55.3234 12.5347  4.414 0.000129 ***
QUET 9.7507 5.4025 1.805 0.081489
AGE 1.0452 0.3861 2.707 0.011253 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 8.916 on 29 degrees of freedom

Multiple R-squared: 0.6412, Adjusted R-squared: 0.6165
F-statistic: 25.92 on 2 and 29 DF, p-value: 3.505e-07

» QUET does not have a significant effect on SBP, when
adjusting for AGE,

» When AGE increases, then SBP will increase with 1.045 units,

» This is a significant increase (p = 0.01), confidence interval
(0.26,1.84) (calculate in R with confint()).
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Confounding

What did we learn from the two previous models?

> Adjustment for AGE leads to a weaker relationship between
SBP and QUET.

» AGE is associated with both SBP and QUET, and affects the
association between them.

This implies that AGE is a confounding variable.

19/34



Confounders (more on this topic tomorrow)

Definition

A confounder is a variable that is a common cause of the
exposure and the response (disease), and NOT an effect of the
exposure or the disease.

» Confounding variables are important when we want to
estimate (causal) effects from various exposures.

P As they cause both the exposure and the response, they are
likely to cause biases.

> They can be dealt with by adjusting in a multiple
regression model: always adjust for potential confounders by
including them in the regression model!

» Multivariate regression models are thus important to include
potential relevant variables.

» Be careful not to include common effects (also called
colliders).
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Simple linear

regression: SBP vs SMK

> fit <- Im(SBP ~ SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-21.824 -9.056 -2.812 11.200 32.176
Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) 140.800 3.661 38.454 <2e-16 ***
SMK 7.024 5.023 1.398 0.172

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 14.18 on 30 degrees of freedom
Multiple R-squared: ©.06117, Adjusted R-squared: ©.02988

F-statistic: 1.955 on 1 and 3@ DF, p-value: 0.1723

» Note that by = 140.80 and b; = 7.02,

» Confidence interval for by (—3.24,17.28) (calculate in R with

confint())
> Hj: by =0 is not rejected, as p = 0.17,
> Average difference between the two groups is 7.02.




Simple linear regression: SBP vs SMK

plot(SBP ~ SMK, data=bloodpressure)
abline(reg=fit, col="red")
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Multiple regression: Combining AGE, QUET and SMK

> fit <- 1m(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 45.1032 10.7649  4.190 0.000252 ***

QUET 8.5924 4.4987 1.910 0.066427
AGE 1.2127 0.3238  3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
Residual standard error: 7.407 on 28 degrees of freedom

Multiple R-squared: ©.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09

» Both AGE and SMK have significant effects,

» When AGE increases 1 unit, SBP increases with 1.2 units,

» Confidence interval: (0.55,1.88), p = 0.001,

» Smokers have 10 units higher SBP than non-smokers,
confidence interval (4.5,15.4), p = 0.001.
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Removing QUET from the model

> fit <- Im(SBP ~ AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-10.639 -5.518 -1.637 4.900 19.616

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 48.0496 11.1296 4.317 0.000168 ***
AGE 1.7092 0.2018  8.471 2.47e-09 ***
SMK 10.2944 2.7681  3.719 0.000853 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 7.738 on 29 degrees of freedom
Multiple R-squared: 0.7298, Adjusted R-squared: 0.7112
F-statistic: 39.16 on 2 and 29 DF, p-value: 5.746e-09

» Both AGE and SMK still have significant effects.

» Removing QUET lead to a slight decrease in the R?: we
might consider keeping it.
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Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 - AGE + 10.29 - SMK

» One year increase in age yields an increase of SBP 1.71 units,
» Non-smokers model: SBP = 48.05 + 1.71 - AGE
» Smokers model: SBP = 58.34 + 1.71 - AGE

160
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Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 - AGE + 10.29 - SMK

» One year increase in age yields an increase of SBP 1.71 units,
» Non-smokers model: SBP = 48.05 + 1.71 - AGE
» Smokers model: SBP = 58.34 + 1.71 - AGE

160

AGE

» The effect on SBP of the increase in AGE is the same
regardless if one is a smoker or not. Is this realistic?

» NO — In reality, the effect of age could be larger for smokers.
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Interaction between two explanatory variables

> If the effect of one variable might depend on another variable,

» we have to build a common model for main effects as well as
interactions:

SBP = by + b1 - AGE + by - SMK + b3 - AGE - SMK

» This is easily done in R with either the “*" or “:" operators:

Im(SBP ~ AGE*SMK, data=bloodpressure)
or
Im(SBP ~ AGE + SMK + AGE:SMK, data=bloodpressure)
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Interaction between two explanatory variables

> fit <- 1m(SBP ~ AGE*SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ AGE * SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-11.036 -4.961 -1.958 5.552 20.665

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 58.5743 14.8048 3.956 0.000472 ***

AGE 1.5152 0.2703 5.605 5.32e-06 ***
SMK -12.8460 21.7153 -0.592 0.558888
AGE: SMK 0.4349 0.4048 1.074 0.291840

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 < ’ 1

Residual standard error: 7.717 on 28 degrees of freedom
Multiple R-squared: ©.7405, Adjusted R-squared: 0.7127
F-statistic: 26.63 on 3 and 28 DF, p-value: 2.369e-08

> Note that the interaction term is not significant, so we may
drop this from the model if there are no particular
biological /clinical reasons for keeping it,
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Interpretation
For the non-smokers (SMK =0):

SBP =bg + by - AGE + by - 0 + b3 - AGE - 0
=58.57 + 1.52 - AGE
For the smokers (SMK = 1):
SBP =bg + by - AGE + by - 1 + b3 - AGE - 1
=45.72 + 1.96 - AGE
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Other possible interactions

> fit <- Im(SBP ~ QUET*SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET * SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-22.3713 -5.5705 -0.6357 7.4972 17.1051

Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) 49.312 19.972 2.469 0.0199 *

QUET 26.303 5.703 4.612 8.01le-05 ***
SMK 29.944 24.164 1.239 0.2256
QUET:SMK -6.185 6.932 -0.892 0.3799

Signif. codes: @ ‘***’ 0.001 ‘*** @0.01 ‘*’ 9.05 ‘.’ 0.1 ¢ * 1

Residudl standard error: 8.948 on 28 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: ©.6137
F-statistic: 17.42 on 3 and 28 DF, p-value: 1.408e-06
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Other possible interactions

> fit <- 1m(SBP ~ QUET*AGE, data=bloodpressure)
> summary(fit)

Call:
lm(formula = SBP ~ QUET * AGE, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.385 -6.208 -2.284 6.243 21.926

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 207.3696 86.3654 2.401 0.0232 *

QUET -34.1170 25.2168 -1.353 0.1869
AGE -1.8468 1.6686 -1.107 0.2778
QUET :AGE 0.8224 0.4625 1.778 ©0.0863 .

Signif. codes: @ “***° 9,001 ‘**’ @.01 ‘*’ 0.05 ‘.” 0.1 ‘ * 1

Residual standard error: 8.601 on 28 degrees of freedom
Multiple R-squared: ©.6776, Adjusted R-squared: 0.6431
F-statistic: 19.62 on 3 and 28 DF, p-value: 4.742e-07
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Model selection

» None of these interactions had significant effects, so in the
light of a parsimony criterion (so to save degrees of freedom)
we will skip the interactions in the final model.

> Automatic model selection is possible, but hard to use in
practice.

» Models motivated by causal interpretations should be based
on subject matter knowledge, not just an algorithm.
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Final multiple regression model

No significant interactions, so we end up with the following model:

SBP =bp + b1 - AGE + by - QUET + b3 - SMK

> fit <- 1m(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 45.1032 10.7649  4.190 0.000252 ***

QUET 8.5924 4.4987 1.910 0.066427
AGE 1.2127 0.3238  3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: ©.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
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Interaction Effects

» Interaction means that the effect of a variable depends on a
second variable,

» Not the same a confounding variable,

» Multivariate regression enables us to analyze interaction
effects,

> We often need large data sets to get significant interaction
effects.

» A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Summary

Key words

» Multiple linear regression
» Confounder / collider (more tomorrow)

» Interaction effects
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