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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12

1. Morning: Regression II
▶ Introduction to Multiple linear regression (briefly: multiple

regression)
▶ More details on linear regression models: confounding,

interactions
2. Afternoon: Regression III

▶ categorical covariates with more than 2 levels
▶ Multiple regression assumptions, leverage effect
▶ To explain, to predict or to describe? How the purpose of the

analysis decides what is important
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Schedule for today

08.30-10.15: Regression analysis II: multiple regression, confounding,
interaction effects

10.15-11.15: R exercise for regression II
11.15-11.45: Discussion of the R exercise for regression II in class

▶ LUNCH

12.45-14.00: Regression analysis III: Multiple regression (continued),
categorical variables, assumptions, leverage effect.
To explain, to predict or to describe?

14.00-15.00: R exercise for regression III
15.00-15.30: Discussion of the R exercises for regression III in class
15.30-16.00: Course Summary

3 / 34



Yesterday: Simple linear regression

A simple linear regression describes the relationship between 1
independent variable (covariate, or predictor) and the dependent
variable (response variable, or outcome) via a line.
Toy example: association between FEV1 and height.
Estimated regression line:

FEV1 ≈ −9.19 + 0.07 · height (1)
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Relationship between simple linear regression and t-test
▶ There is a connection between the two approaches:
▶ Student’s t-test (with equal variances) for the difference in the

population mean between two independent groups is
equivalent to a simple linear regression with the grouping as
predictor variable.

Let us see this in a toy example:
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R output for the t-test

R output for the Student’s t-test (with equal variances) for the
difference in energy between the lean and obese:
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R output for the simple linear regression
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Multiple regression

▶ Is an extension of the simple linear regression with one
independent variable (predictor / covariate)

▶ Still a continuous response (dependent) variable, but several
explanatory (independent) variables (multiple predictors /
covariates)

▶ The independent variables can be continuous, dichotomous or
have more than two categories

▶ The multiple linear regression model is defined as

Y = b0 + b1x1 + · · · + bpxp
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Regression coefficients

Y = b0 + b1x1 + · · · + bnxn

▶ b1, . . . , bn are called regression coefficients
▶ bi can be interpreted as the effect of one unit increase of the

variable xi when the other variables remain unchanged
▶ also called adjusted effect
▶ Not necessarily a causal effect
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Interpretation

▶ Geometrically this corresponds to
viewing data as points in a
high-dimensional space.

▶ Beyond three dimensions we cannot
picture such a space, but
mathematically there is no difficulty
with high-dimensional spaces.

Regression with two
independent variables:
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Multiple regression via a toy example

Example: data on systolic blood pressure

Description Name
Id Id
Systolic blood pressure SBP
Quetelet index (BMI) QUET
Age AGE
Smoking status SMK
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Simple linear regression: SBP vs AGE

▶ Note that b̂0 = 59.09 and b̂1 = 1.61,
▶ Confidence interval for b1 (1.12, 2.09) (calculate in R with

confint())
▶ H0 : b1 = 0 is rejected, as p < 0.001.
▶ SBP increases 1.6 units for each year.
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Simple linear regression: SBP vs Age

15 / 34



Simple linear regression: SBP vs QUET

▶ Note that b̂0 = 70.58 and b̂1 = 21.49,
▶ Confidence interval for b1 (14.25, 28.73) (calculate in R with

confint())
▶ H0 : b1 = 0 is rejected, as p < 0.001.
▶ SBP increases 21.49 units for each unit of QUET.
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Simple linear regression: SBP vs QUET
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Multiple regression: Combining AGE and QUET

▶ QUET does not have a significant effect on SBP, when
adjusting for AGE,

▶ When AGE increases, then SBP will increase with 1.045 units,
▶ This is a significant increase (p = 0.01), confidence interval

(0.26, 1.84) (calculate in R with confint()).
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Confounding

What did we learn from the two previous models?
▶ Adjustment for AGE leads to a weaker relationship between

SBP and QUET.
▶ AGE is associated with both SBP and QUET, and affects the

association between them.

This implies that AGE is a confounding variable.
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Confounders (more on this topic tomorrow)
Definition
A confounder is a variable that is a common cause of the
exposure and the response (disease), and NOT an effect of the
exposure or the disease.
▶ Confounding variables are important when we want to

estimate (causal) effects from various exposures.
▶ As they cause both the exposure and the response, they are

likely to cause biases.
▶ They can be dealt with by adjusting in a multiple

regression model: always adjust for potential confounders by
including them in the regression model!

▶ Multivariate regression models are thus important to include
potential relevant variables.

▶ Be careful not to include common effects (also called
colliders).
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Simple linear regression: SBP vs SMK

▶ Note that b̂0 = 140.80 and b̂1 = 7.02,
▶ Confidence interval for b1 (−3.24, 17.28) (calculate in R with

confint())
▶ H0 : b1 = 0 is not rejected, as p = 0.17,
▶ Average difference between the two groups is 7.02.
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Simple linear regression: SBP vs SMK
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Multiple regression: Combining AGE, QUET and SMK

▶ Both AGE and SMK have significant effects,
▶ When AGE increases 1 unit, SBP increases with 1.2 units,
▶ Confidence interval: (0.55, 1.88), p = 0.001,
▶ Smokers have 10 units higher SBP than non-smokers,

confidence interval (4.5, 15.4), p = 0.001.
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Removing QUET from the model

▶ Both AGE and SMK still have significant effects.
▶ Removing QUET lead to a slight decrease in the R2: we

might consider keeping it.
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Closer look at the effect of AGE and SMK

SBP = 48.05 + 1.71 · AGE + 10.29 · SMK

▶ One year increase in age yields an increase of SBP 1.71 units,
▶ Non-smokers model: SBP = 48.05 + 1.71 · AGE
▶ Smokers model: SBP = 58.34 + 1.71 · AGE

▶ The effect on SBP of the increase in AGE is the same
regardless if one is a smoker or not. Is this realistic?

▶ NO → In reality, the effect of age could be larger for smokers.
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Interaction between two explanatory variables

▶ If the effect of one variable might depend on another variable,
▶ we have to build a common model for main effects as well as

interactions:

SBP = b0 + b1 · AGE + b2 · SMK + b3 · AGE · SMK

▶ This is easily done in R with either the “*” or “:” operators:

lm(SBP ˜ AGE*SMK, data=bloodpressure)

or
lm(SBP ˜ AGE + SMK + AGE:SMK, data=bloodpressure)
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Interaction between two explanatory variables

▶ Note that the interaction term is not significant, so we may
drop this from the model if there are no particular
biological/clinical reasons for keeping it,
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Interpretation
For the non-smokers (SMK =0):

SBP =b̂0 + b̂1 · AGE + b̂2 · 0 + b̂3 · AGE · 0
=58.57 + 1.52 · AGE

For the smokers (SMK = 1):
SBP =b̂0 + b̂1 · AGE + b̂2 · 1 + b̂3 · AGE · 1

=45.72 + 1.96 · AGE
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Other possible interactions
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Other possible interactions
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Model selection

▶ None of these interactions had significant effects, so in the
light of a parsimony criterion (so to save degrees of freedom)
we will skip the interactions in the final model.

▶ Automatic model selection is possible, but hard to use in
practice.

▶ Models motivated by causal interpretations should be based
on subject matter knowledge, not just an algorithm.
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Final multiple regression model
No significant interactions, so we end up with the following model:

SBP = b0 + b1 · AGE + b2 · QUET + b3 · SMK
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Interaction Effects

▶ Interaction means that the effect of a variable depends on a
second variable,

▶ Not the same a confounding variable,
▶ Multivariate regression enables us to analyze interaction

effects,
▶ We often need large data sets to get significant interaction

effects.

▶ A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Summary

Key words
▶ Multiple linear regression
▶ Confounder / collider (more tomorrow)
▶ Interaction effects
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