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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12

1. Morning: Regression Il

I Introduction to Multiple linear regression (briefly: multiple
regression)

I More details on linear regression models: confounding,
interactions

2. Afternoon: Regression Ill
I categorical covariates with more than 2 levels
I Multiple regression assumptions, leverage effect
I To explain, to predict or to describe? How the purpose of the
analysis decides what is important

2/28



Schedule for today

08.30-10.15:

10.15-11.15:
11.15-11.45:

12.45-14.00:

14.00-15.00:
15.00-15.30:
15.30-16.00:

Regression analysis Il: multiple regression, confounding,
interaction effects

R exercise for regression Il

Discussion of the R exercise for regression Il in class
LUNCH

Regression analysis I1l: Multiple regression (continued),
categorical variables, assumptions, leverage effect.
To explain, to predict or to describe?

R exercise for regression Il
Discussion of the R exercises for regression Il in class

Course Summary
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Conclusion this morning:
Final multiple regression model

No significant interactions, so we end up with the following model:

SBP =hg + b1 - AGE + by - QUET + bz - SMK

> fit <- 1m(SBP ~ QUET + AGE + SMK, data=bloodpressure)
> summary(fit)

Call:
Im(formula = SBP ~ QUET + AGE + SMK, data = bloodpressure)

Residuals:
Min 1Q Median 3Q Max
-13.5420 -6.1812 -0.7282 5.2908 15.7050

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 45.1032 10.7649  4.190 0.000252 ***

QUET 8.5924 4.4987 1.910 0.066427
AGE 1.2127 0.3238  3.745 0.000829 ***
SMK 9.9456 2.6561 3.744 0.000830 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 7.407 on 28 degrees of freedom
Multiple R-squared: 0.7609, Adjusted R-squared: 0.7353
F-statistic: 29.71 on 3 and 28 DF, p-value: 7.602e-09
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Conclusion this morning:
Interaction E [edts

I Interaction means that the effect of a variable depends on a
second variable,

I Not the same a confounding variable,

I Multivariate regression enables us to analyze interaction
effects,

I We often need large data sets to get significant interaction
effects.

I A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Assumptions: residuals

e1=Yy1—Bo—B1-Xua— =By Xp1

en=yn_BO_Bl'Xln_"'_Bp'xpn

I Divide by empirical standard deviation to get standardized
residuals,
I Standardized residuals should:
I Be independent,

I Be normally distributed around 0, regardless of the size of the
fitted value.
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Check assumptions with R

I Normality plot for residuals (Normal Q-Q plot):
top-right plot on next slide

I Residual plot: Plot residuals against fitted values:
top-left and bottom-left plots on next slide
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Model diagnostics plots in R

Residuals vs Fitted Normal Q-Q
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Explanatory variables with more than two categories

We will go back to the birth weight data set (birth.dta).

Response variables:
BWT Birth weight

Explanatory variables:
AGE Age
LWT Mothers weight

SMK Smoking status
ETH Ethnicity, 1 = White, 2 = Black, 3 = Other
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Categorical variables with more than two levels

I Are formally included in the analysis with dummy variables,

I In some softwares (e.g. SPSS) one has to manually construct
two dummy-variables to include ethnicity.

I In R this is done automatically provided we make sure that
the categorical variable is included as a factor variable.

I Character variables are automatically translated into factor,
but not numeric variables.

I With this, R will internally create two new dummy variables
under the hood:

ETH | Eth(1) Eth(2)

White 0 0
Black 1 0
Other 0 1
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Simple regression including a categorical predictor (with
more than 2 levels)

> fit <- lm(bwt ~ as.factor(eth), data=birth)
> summary(fit)

Call:
1m(formula = bwt ~ as.factor(eth), data = birth)

Residuals:
Min 1Q Median 3Q Max
-2095.01 -503.01 -13.74 526.99 1886.26

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 2719.69 140.04 19.420 <2e-16 ***
as. factor(eth)other 84.32 165.00 ©.511 0.6099
as.factor(eth)white 384.05 157.87 2.433 0.0159 *

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ‘ ’ 1

Residudl standard error: 714.1 on 186 degrees of freedom
Multiple R-squared: @.05075, Adjusted R-squared: ©.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
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Simple regression including a categorical predictor (with
more than 2 levels)

> #Since eth is a character variable (text, not numbers), R will actually
> #automatically translate it into a factor variable:

> fit <- Im(bwt ~ eth, data=birth)

> summary(fit)

Call:

Im(formula = bwt ~ eth, data = birth)

Residuals:
Min 1Q Median 3Q Max
-2095.01 -503.01 -13.74 526.99 1886.26

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 2719.69 140.04 19.420 <2e-16 ***
ethother 84.32 165.00 0.511 0.6099
ethwhite 384.05 157.87 2.433 0.0159 *

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 714.1 on 186 degrees of freedom

Multiple R-squared: ©.05075, Adjusted R-squared: ©.04054
F-statistic: 4.972 on 2 and 186 DF, p-value: 0.007879
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Multiple regression with all available predictors:
AGE, LWT, SMK and ETH

> fit <- Im(bwt ~ age + 1wt + smk + eth, data=birth)
> summary(fit)

Call:
1m(formula = bwt ~ age + 1wt + smk + eth, data = birth)

Residuals:
Min 1Q Median 3Q Max
-2281.79 -447.32 22.18 472.27 1747.79

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 2330.426 337.061 6.914 7.6le-11 ***
age -2.036 9.817 -0.207 0.835894
1wt 3.999 1.737 2.302 0.022480 *
smksmoker  -400.326 109.207 -3.666 ©.000323 ***
ethother 110.929 166.953 0.664 0.507251
ethwhite 511.535 157.028 3.258 ©.001339 **

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 681.9 on 183 degrees of freedom
Multiple R-squared: 0.1484, Adjusted R-squared: ©.1251
F-statistic: 6.377 on 5 and 183 DF, p-value: 1.744e-05
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Testing if the multi-level categorical variable is significant

Once we have fitted a regression model including a multi-level
categorical variable, we might want to test if there is a significant
overall effect of that variable.

We do not get this from the regression output, but we can use the
anova command to perform a so-called likelihood-ratio test, which
compares the model with ETH to the model without ETH.

Remember that 'ETH’ is encoded with 2 'dummy variables’: R

then tests the null-hypothesis that the regression coefficient for
both dummy variables are equal to 0.
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R output

> fit <- Im(bwt ~ age + 1wt + smk + eth, data=birth)
> fit@ <- 1m(bwt ~ age + 1wt + smk, data=birth)

> anova(fit@, fit)

Analysis of Variance Table

Model 1: bwt ~ age + 1wt + smk
Model 2: bwt ~ age + 1wt + smk + eth
Res.Df RSS Df Sum of Sq F Pr(>F)
1 185 92935223
2 183 85091158 2 7844064 8.4349 0.0003133 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 9.05 ‘.’ 9.1 ‘ * 1

Note that the p-value is 0.0003, so the variable is significant.
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Robustness: leverage and influence of observations

I Sometimes a single individual can have a huge influence on
the estimates in a regression model,

I This is something we want to avoid as it makes the conclusion
more arbitrary,

I A single individual will typically have more influence on the
final estimate if it is very untypical in terms of covariates, and
also has a relatively large residual value,

I How different an individual is from the average, in terms of
covariates, is quantified by the 'leverage’,

I It is common to assess the influence by plotting the squared
residual against the leverage for every individual,

I We can use the fourth plot of the model diagnostics plots that
are generated by running plot(fit).
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Standardized residuals vs leverage

Residuals vs Leverage

1890

Standardized residuals
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Leverage
Im(bwt ~ age + Iwt + smk + eth)

I Potential influence points are indicated by their ID.

I We can use Cook’s distance > 1 as an indication for a
potential influence point (not the case here).
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Summary

Key words

I Categorical covariates with more than 2 levels
I Regression assumptions

I Robustness, leverage effect
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Statistical Science
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To Explain or to Predict?

Galit Shmueli

Abstract.  Statistical modeling is a powerful tool for developing and testing
theories by way of causal explanation, prediction, and description. In many
disciplines there is near-exclusive use of statistical modeling for causal ex-
planation and the assumption that models with high explanatory power are
inherently of high predictive power. Conflation between explanation and pre-

To Explain
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or
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Definitions: Describe

Descriptive modeling
statistical model for approximating
a distribution or relationship

Descriptive power
goodness of fit, generalizable to
population
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Description: Sailer et al. (2023). Caressed by music: Related
preferences for velocity of touch and tempo of music?
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Touch (upper) and beat rating patterns (lower) with fit line for four participants. MSE=mean of the squared residuals as a measure of the goodness of
the fit.

I Describe relationships between variables X and y.

I We are mainly interested in: the fitted regression curve
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Definitions: Explain

Explanatory modeling
theory-based, statistical testing
of causal hypotheses

Explanatory power
strength of relationship in
statistical model
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Explanation: Kristiansen et al. (2021). Mediators Linking
Maternal Weight to Birthweight and Neonatal Fat Mass in Healthy
Pregnancies

M1: Maternal mediators

Fetal mediators
072

X Bxposure |/ o | [ outcome
variables Y/ "\ variable
[ f sirthweignt
> ai )
WG

€: Confounders: \
[rae] Gesatonl g2

Figure 4. The path analysis with birthweight as the outcome (n = 165) presented with standardized fs values. Red arrows symbolize a positive associ-
ation; blue boli dashed dicat
of adi  Age, maternal age; BMI, maternal pregestational body mass indox; Leptin, materal levels of leptin; AG,, fotal venous-arterial glu
cose difference; G,,,, maternal arterial levels of glucose; GWG, gestational weight gain; I, fetal venous levels of insulin; I, maternal arterial levels
of insulin; PW, placental weight; Sex, fetal sex. *P<.05; ** P< 01; *** P< 001

tion. Adi tin, maternal levels

I Explain/ understand the nature of a relationships between
variables X and y.
I We are mainly interested in: coefficients @, b and their p-values
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