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Outline

Aalen chapter 11.4-11.6, Kirkwood and Sterne chapters 11
and 12

1. Morning: Regression II
I Introduction to Multiple linear regression (briefly: multiple

regression)
I More details on linear regression models: confounding,

interactions
2. Afternoon: Regression III

I categorical covariates with more than 2 levels
I Multiple regression assumptions, leverage effect
I To explain, to predict or to describe? How the purpose of the

analysis decides what is important
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Schedule for today

08.30-10.15: Regression analysis II: multiple regression, confounding,
interaction effects

10.15-11.15: R exercise for regression II
11.15-11.45: Discussion of the R exercise for regression II in class

I LUNCH

12.45-14.00: Regression analysis III: Multiple regression (continued),
categorical variables, assumptions, leverage effect.
To explain, to predict or to describe?

14.00-15.00: R exercise for regression III
15.00-15.30: Discussion of the R exercises for regression III in class
15.30-16.00: Course Summary
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Conclusion this morning:
Final multiple regression model

No significant interactions, so we end up with the following model:

SBP = b0 + b1 · AGE + b2 · QUET + b3 · SMK
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Conclusion this morning:
Interaction Effects

I Interaction means that the effect of a variable depends on a
second variable,

I Not the same a confounding variable,
I Multivariate regression enables us to analyze interaction

effects,
I We often need large data sets to get significant interaction

effects.

I A variable Z that has an interaction effect on variable X is
sometimes called an effect modifier of X.
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Assumptions: residuals

e1 = y1 − β̂0 − β̂1 · x11 − · · · − β̂p · xp1
...

en = yn − β̂0 − β̂1 · x1n − · · · − β̂p · xpn

I Divide by empirical standard deviation to get standardized
residuals,

I Standardized residuals should:
I Be independent,
I Be normally distributed around 0, regardless of the size of the

fitted value.
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Check assumptions with R

I Normality plot for residuals (Normal Q-Q plot):
top-right plot on next slide

I Residual plot: Plot residuals against fitted values:
top-left and bottom-left plots on next slide
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Model diagnostics plots in R
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Explanatory variables with more than two categories

We will go back to the birth weight data set (birth.dta).

Response variables:
BWT Birth weight

Explanatory variables:
AGE Age
LWT Mothers weight
SMK Smoking status
ETH Ethnicity, 1 = White, 2 = Black, 3 = Other
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Categorical variables with more than two levels

I Are formally included in the analysis with dummy variables,
I In some softwares (e.g. SPSS) one has to manually construct

two dummy-variables to include ethnicity.
I In R this is done automatically provided we make sure that

the categorical variable is included as a factor variable.
I Character variables are automatically translated into factor,

but not numeric variables.
I With this, R will internally create two new dummy variables

under the hood:

ETH Eth(1) Eth(2)
White 0 0
Black 1 0
Other 0 1
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Simple regression including a categorical predictor (with
more than 2 levels)
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Simple regression including a categorical predictor (with
more than 2 levels)
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Multiple regression with all available predictors:
AGE, LWT, SMK and ETH
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Testing if the multi-level categorical variable is significant

Once we have fitted a regression model including a multi-level
categorical variable, we might want to test if there is a significant
overall effect of that variable.

We do not get this from the regression output, but we can use the
anova command to perform a so-called likelihood-ratio test, which
compares the model with ETH to the model without ETH.

Remember that ’ETH’ is encoded with 2 ’dummy variables’: R
then tests the null-hypothesis that the regression coefficient for
both dummy variables are equal to 0.
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R output

Note that the p-value is 0.0003, so the variable is significant.
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Robustness: leverage and influence of observations

I Sometimes a single individual can have a huge influence on
the estimates in a regression model,

I This is something we want to avoid as it makes the conclusion
more arbitrary,

I A single individual will typically have more influence on the
final estimate if it is very untypical in terms of covariates, and
also has a relatively large residual value,

I How different an individual is from the average, in terms of
covariates, is quantified by the ’leverage’,

I It is common to assess the influence by plotting the squared
residual against the leverage for every individual,

I We can use the fourth plot of the model diagnostics plots that
are generated by running plot(fit).
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Standardized residuals vs leverage

I Potential influence points are indicated by their ID.
I We can use Cook’s distance > 1 as an indication for a

potential influence point (not the case here).
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Summary

Key words
I Categorical covariates with more than 2 levels
I Regression assumptions
I Robustness, leverage effect
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Description: Sailer et al. (2023). Caressed by music: Related
preferences for velocity of touch and tempo of music?

I Describe relationships between variables x and y.
I We are mainly interested in: the fitted regression curve
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Explanation: Kristiansen et al. (2021). Mediators Linking
Maternal Weight to Birthweight and Neonatal Fat Mass in Healthy
Pregnancies

I Explain/ understand the nature of a relationships between
variables x and y.

I We are mainly interested in: coefficients â, b̂ and their p-values
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