
MF9130E - Introductory course in Statistics

The Easter egg module
How to reason about probabilities and randomness more generally?



Need to think carefully - cannot just follow the cookbook of probability calculus

● Why? Because each application may present something that looks different 
under the surface

● Can illustrate this using a so called Sisters’ Paradox
● You are told about a family with two children and learn that one of them is a 

girl. What is the probability that the other one is also a girl (assuming they are 
not identical twins)?

● Intuition easily suggests 1/2 as the answer, but standard textbook answer is 
1/3

● The answer 1/3 is based on the conditional probability P(C|A) = P(C∩A)/P(A), 
where A is the event of observing one girl and C is the event with 2 girls.

● Here we assume 2-kid families follow the distribution: P(GG)=1/4, P(BG)=1/2, 
P(BB)=1/4, so that P(C∩A) = 1/4,P(A) = 3/4, and P(C|A) = 1/3 



Sisters’ Paradox continued 

● But there is more here than meets the eye
● Need a statistical model generating the observation A for us 
● Assume we ring the doorbell for a randomly chosen family and a girl opens 

the door. We ask if she has one sibling and the answer is yes
● We then consider the likelihood of observing this event (A) for each possible 

family configuration
● P(A|BB) is easy because it is zero (impossible event)
● P(A|GG) is also easy because it is one (certain event)
● P(A|BG) is more tricky and we have multiple options
● P(GG)=1/4, P(BG)=1/2, P(BB)=1/4 are the prior probabilities for family 

configurations, i.e. a chosen model for the uncertainty facing us



Sisters’ Paradox continued

● Once we have decided suitable probability P(A|BG), we can use the celebrated 
Bayes’ formula to get an answer to our original question:

● P(GG|A) = P(A|GG)P(GG) / [P(A|GG)P(GG)+P(A|BB)P(BB)+P(A|BG)P(BG)]
● Let us now assume that children in the family take randomly turns in answering 

the door, then P(A|BG) = 1/2
● Plugging this in gives P(GG|A) = 1•1/4 / [1•1/4 + 1/2•1/2 + 0•1/4] = 1/2
● If we instead assume that the children have decided that the girl always answers 

the door, then P(A|BG) = 1 and correspondingly P(GG|A) becomes 1/3! 
● Moral of the story? We need to think carefully about observation processes when 

making statistical statements (more complete story can be read here).

http://web.abo.fi/fak/mnf/mate/jc/miscFiles/SistersParadoxByBayes.pdf


More about randomness

From Gelman et al. BDA book see also this article in Statistics in Medicine by Gelman and Price

https://www.taylorfrancis.com/books/mono/10.1201/b16018/bayesian-data-analysis-david-dunson-donald-rubin-john-carlin-andrew-gelman-hal-stern-aki-vehtari
https://doi.org/10.1002/(SICI)1097-0258(19991215)18:23%3C3221::AID-SIM312%3E3.0.CO;2-M


A puzzling pattern on the map

From Gelman et al. BDA book see also this article in Statistics in Medicine by Gelman and Price

https://www.taylorfrancis.com/books/mono/10.1201/b16018/bayesian-data-analysis-david-dunson-donald-rubin-john-carlin-andrew-gelman-hal-stern-aki-vehtari
https://doi.org/10.1002/(SICI)1097-0258(19991215)18:23%3C3221::AID-SIM312%3E3.0.CO;2-M


Recap of the cancer map puzzle

● The counties with small population size (say 1,000) would tend to have zero 
cases of death from this particular (rare) cancer in a 10-year register-based 
epidemiological surveillance

● Thus, they end up among the counties with 10% lowest cancer death rates
● However, as there are hundreds of small counties, occasionally even in them, 

there will be 1 such cancer death observed
● This results in a death rate estimate well above the national average, pushing 

the county into the list with 10% highest cancer death rates
● This highlights that epidemiological maps can be highly misleading, especially 

when raw data are used
● Paradoxically maps can also mislead us even when the data are smoothed 

with a model since it can introduce spatial artefacts, as discussed here 

https://doi.org/10.1002/(SICI)1097-0258(19991215)18:23%3C3221::AID-SIM312%3E3.0.CO;2-M


How to relate to randomness 

● In many bio-medical applications we need to consider stochastic variation occurring both in 
unobservable layers of the world and in our observations (samples, measurements)

● We typically use statistical models with parameters relating to the unobservable aspects of study 
populations (e.g. cancer risk) and assume that observations (e.g. cancer cases) are generated from 
some distribution defined by the parameters (clarified below)

● It is important to notice that the parameters can be seen as random variables themselves, 
depending on the application

● The above cancer map case study illustrates this point as it is natural to think that the cancer risk 
(parameter) can vary over counties and time due to variation in exposures and other population 
characteristics that may differ considerably between local populations

● When appropriate models with parameters are too difficult (or time-consuming) to define, we may 
want to resort to non-parametric statistical methods that make less restrictive assumptions about the 
nature of the data (e.g. shape of distribution)

● There is an extensive literature on advanced non-parametric methods for spatial epidemiology (for a 
case study see here)

● In this course we restrict attention to basic non-parametric tests 

https://users.aalto.fi/~ave/publications/Vehtari_Liverpool2013.pdf


Data transformations and more advanced non-parametric tests
Antibody titer measurements are typical example of distributions where non-parametric tests of 
location shift may not be enough for comparison

Fig 1 in this article illustrates the issues: https://www.nature.com/articles/s41598-017-06177-0

https://www.nature.com/articles/s41598-017-06177-0


Kolmogorov-Smirnov test as a generic non-parametric 
comparison of two distributions

https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

