Resampling methods 0000000

Outline for Part 2

Measuring prediction performance

Sample splitting

Resampling methods

Which model is best for prediction?

Example: Regularization/Variable selection by Lasso

Idea:

Penalize (shrink towards zero) regression coefficients by adding penalty term to LS criterion.

Thereby, "non-relevant" coefficients are estimated as exactly 0 and can be excluded.

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Penalty controlled by regularization parameter λ :

- small $\lambda \Rightarrow$ many variables in model
- large $\lambda \Rightarrow$ few variables in model

 \Rightarrow How to select λ to minimize prediction error?

Resampling methods 0000000

Measuring prediction performance

To evaluate model performance on a given data set, measure how well its predictions actually match the observed data.

How close is the predicted value to the true value for that observation?

• Linear Regression: Mean squared error:

$$\mathsf{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• 2-class Classification: Brier score:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{p}(y_i = 1 | x_i))^2$$

Performance measures

Some models are used only for parameter estimation and testing But:

- If used for prediction/classification, need to consider accuracy of predictions
- Two major aspects of prediction accuracy that need to be assessed:
 - (1) Reliability or calibration of a model:
 - ability of the model to make unbiased estimates of the outcome
 - observed responses agree with predicted responses
 - (2) Discrimination ability:
 - the model is able, through the use of predicted responses, to separate subjects

Performance measures for classification tasks

Steyerberg et al, 2010 (Table 1)

Aspect	Measure	Visualization	Characteristics
Overall performance	R ² Brier → Brier score	Validation graph	Better with lower distance between Y and \hat{Y} . Captures calibration and discrimination aspects.
Discrimination (C statistic - AUC	ROC curve	Rank order statistic; Interpretation for a pair of patients with and without the outcome
	Discrimination slope	Box plot	Difference in mean of predictions between outcomes; Easy visualization
Calibration	Calibration-in-the-large	Calibration or validation graph	Compare mean(y) versus mean(\hat{y}); essential aspect for external validation
(Calibration slope		Regression slope of linear predictor; essential aspect for internal and external validation related to 'shrinkage' of regression coefficients
	Hosmer-Lemeshow test		Compares observed to predicted by decile of predicted probability

Resampling methods

Example: Data challenge model performance evaluation

https://drive.hhs.gov/pediatric_challenge.html

rediction	performance
000000	0000000000

Example: Data challenge model performance evaluation

P C

Prediction performance	Sample splitting	Resampling methods
000000000000000000000000000000000000000	0000	000000
	0000	0000000

Example: Data challenge model performance evaluation

Example: Data challenge model performance evaluation

Quantitative score (85 %):

$$\frac{1}{3} \left(\left(\max_{\text{threshold } t} F_2(t) \right)^2 + \text{AUPR}^2 + \left(\text{Mean}(\text{AUROC}) - \text{Var}(\text{AUROC}) \right)^2 \right)$$

Qualitative score (15 %):

- Timeliness
- Interpretability
- Context Utility
- Technical Reproducibility
- Prediction Reproducibility

Resampling methods 0000000

How to estimate the performance measure in an unbiased manner?

How to estimate performance in an unbiased manner?

Need: Model assessment/validation to ascertain whether predicted values from the model are likely to accurately predict responses on future subjects or subjects not used to develop the model

Two modes of validation

• External:

Use different sets of subjects for building the model (including tuning) and testing

• Internal:

(i) Apparent (or training) error: evaluate fit on same data used to create fit

- (ii) Data splitting and its extensions
- (iii) Resampling methods

- Two fundamental problems with estimation on the training data:
 - The final model will over-fit the training data. Problem is more pronounced with models with a large number of variables.
 - The error estimate will be overly optimistic (too low).
- A much better idea is to **split the data** into disjoint subsets or use **resampling methods**
- Training error: Classification error in the training data set
- Generalisation error: Expected error for the classification of new samples → This is what we want to estimate!

The training error is a bad estimator for the generalisation error!

Over-fitting is a major problem

Behaviour of training sample error as the model complexity is varied

Over-fitting is a major problem

Behaviour of test and training sample error as the model complexity is varied

The Bias-Variance Trade-Off

- A simple model might have more model bias, but
- A complex model has more model variance.

For $Y = f(X) + \epsilon$ with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma_{\epsilon}^2$, the expected prediction error of $\hat{f}(X)$ at point x_0 with squared error loss is:

$$\operatorname{Err}(x_{0}) = E[(Y - \hat{f}(x_{0}))^{2} | X = x_{0}]$$

$$= \sigma_{\varepsilon}^{2} + [\operatorname{E}\hat{f}(x_{0}) - f(x_{0})]^{2} + E[\hat{f}(x_{0}) - \operatorname{E}\hat{f}(x_{0})]^{2}$$

$$= \sigma_{\varepsilon}^{2} + \operatorname{Bias}^{2}(\hat{f}(x_{0})) + \operatorname{Var}(\hat{f}(x_{0}))$$

$$= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^{2} + \operatorname{Variance.}$$
(7.9)

from Hastie et al. (2009), chapter 7.3

MedBioInfo - Machine Learning

Machine learning for small data 2

Prediction performance

Sample splitting

Resampling methods

The Bias-Variance Trade-Off

MedBioInfo - Machine Learning

Machine learning for small data 2

The danger for over-fitting is higher with complex models

Linear model

- Low complexity
- Stable (linear) decision boundary
- Generalisation error might be hardly larger than the training error

1-Nearest-neighbour method

- High complexity
- Unstable (highly non-linear) decision boundary
- Large over-fitting likely: Generalisation error probably much larger than training error

Resampling methods 0000000

k-Nearest-neighbour method

- k=3: Classify the test sample as a red triangle.
- k=5: Classify the test sample as a blue square.

Model building, selection and assessment

- 1. How to decide which method is the "best", i.e. has the smallest generalisation error, in a specific situation?
- 2. And how large is that smallest generalisation error anyway?
- Model building and selection: For a variety of different methods
 - 1. Fit ("train") the models,
 - i.e. perform parameter tuning/ variable selection
 - 2. Estimate the prediction errors.
 - 3. Choose the "best" method for a specific situation.

Model assessment

• For the final selected model estimate the generalisation error on *new data*.

Resampling methods

Sample splitting

 $\rightarrow\,$ Split data in several independent subsets before model building.

Sample splitting

In a data-rich situation, we can split the available data.

50%	25%	25%
Training	Validation	Test
Selection	Assessment	

- Training set: Fit ("train") the various prediction models
- Validation set:
 - Estimate the prediction errors of the models
 - Final model: Choose model with smallest prediction error
- **Test set**: Estimate the generalisation error by applying the final model to a new test data set

Sample splitting

Model building and selection \rightarrow

 \rightarrow Model assessment

Drawbacks of sample splitting

One-time sample splitting has two **basic drawbacks**:

- We may not be able to afford the "luxury" of setting aside a portion of the data set for testing, as it might result in a large loss of power.
- The assessment can vary greatly when taking different splits: Since it is a single train-and-test experiment, the estimate of the error rate will be misleading if we happen to get an "unfortunate" split.

Resampling methods

Resampling methods

- \rightarrow Cross-validation
- \rightarrow Bootstrapping

Cross-validation

- Alternative to data splitting in not so data-rich situations (i.e. most of the time...)
- Partition the data set into K roughly equal-sized subsets
- Each subset will be the test data set once, with the remaining samples making up the training data

1	2	3	4	5
Train	Train	Validation	Train	Train

• Cross-validation error: The results are pooled from all test sets to estimate the performance of the model (each case is used exactly once).

Cross-validation

• K-fold cross-validation

• Leave-one-out cross-validation

Nested cross-validation

- Inner CV loop: Model building and selection
 - Feature selection, model selection, parameter tuning
 - Choose the model with the smallest CV error within inner loop
- Outer CV loop: Model assessment
 - Estimate the generalisation error for the final model

Machine learning for small data 2

from: Maros et al. (2020)

Resampling methods

K-fold cross-validation: Training set size bias

Hypothetical learning curve:

The performance of the predictor improves as the training set size increases to about 100 observations.

Increasing this number further brings only a small benefit.

Drawbacks of cross-validation

- Leave-one-out CV: may have large variance
- K-fold CV: may have large bias, depending on the choice of the number of observations to be held out from each fit. The bias is possibly severe for training set sizes < 50, say. If the learning curve has a considerable slope at the given training set size, 5 or 10-fold CV will strongly overestimate the true prediction error.
- Possible solution: estimate prediction error by bootstrapping