Outline for Part 2

[Measuring prediction performance](#page-2-0)

[Sample splitting](#page-20-0)

[Resampling methods](#page-24-0)

Which model is best for prediction?

Example: Regularization/Variable selection by Lasso

Idea:

Penalize (shrink towards zero) regression coefficients by adding penalty term to LS criterion.

Thereby, "non-relevant" coefficients are estimated as exactly 0 and can be excluded.

$$
\hat{\beta}^{\text{lasso}} = \underset{\beta}{\text{argmin}} \bigg\{\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \bigg\}
$$

Penalty controlled by regularization parameter λ :

- small $\lambda \Rightarrow$ many variables in model
- large $\lambda \Rightarrow$ few variables in model

 \Rightarrow How to select λ to minimize prediction error?

Measuring prediction performance

To evaluate model performance on a given data set, measure how well its predictions actually match the observed data.

How close is the predicted value to the true value for that observation?

• Linear Regression: Mean squared error:

$$
MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$

• 2-class Classification: Brier score:

$$
BS = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{p}(y_i = 1|x_i))^2
$$

Performance measures

Some models are used only for parameter estimation and testing But:

- If used for prediction/classification, need to consider accuracy of predictions
- *•* Two major aspects of prediction accuracy that need to be assessed:
	- (1) Reliability or calibration of a model:
		- *•* ability of the model to make unbiased estimates of the outcome
		- *•* observed responses agree with predicted responses
	- (2) Discrimination ability:
		- *•* the model is able, through the use of predicted responses, to separate subjects

Performance measures for classification tasks

Steyerberg et al, 2010 (Table 1)

[Prediction performance](#page-2-0) [Sample splitting](#page-20-0) Sample splitting methods
 Ω

Example: Data challenge model performance evaluation

https://drive.hhs.gov/pediatric_challenge.html

8 MedBioInfo - Machine Learning Machine Musculing for small data 2

Example: Data challenge model performance evaluation

Example: Data challenge model performance evaluation

Example: Data challenge model performance evaluation

Quantitative score (85 %):

$$
\frac{1}{3}\Bigg(\Big(\max_{\text{threshold }t}F_2(t)\Big)^2 + \text{AUPR}^2 + \Big(\text{Mean}(\text{AUROC}) - \text{Var}(\text{AUROC})\Big)^2\Bigg)
$$

Qualitative score (15 %):

- *•* Timeliness
- *•* Interpretability
- *•* Context Utility
- *•* Technical Reproducibility
- Prediction Reproducibility

How to estimate the performance measure in an unbiased manner?

How to estimate performance in an unbiased manner?

Need: Model assessment/validation to ascertain whether predicted values from the model are likely to accurately predict responses on future subjects or subjects not used to develop the model

Two modes of validation

• External:

Use different sets of subjects for building the model (including tuning) and testing

• Internal:

(i) Apparent (or training) error: evaluate fit on same data used to create fit

- (ii) Data splitting and its extensions
- (iii) Resampling methods
- *•* Two fundamental problems with estimation on the training data:
	- *•* The final model will over-fit the training data. Problem is more pronounced with models with a large number of variables.
	- *•* The error estimate will be overly optimistic (too low).
- A much better idea is to **split the data** into disjoint subsets or use resampling methods
- **•** Training error: Classification error in the training data set
- *•* Generalisation error: Expected error for the classification of new samples \rightarrow This is what we want to estimate!

The training error is a bad estimator for the generalisation error!

Over-fitting is a major problem

Behaviour of training sample error as the model complexity is varied

Over-fitting is a major problem

Behaviour of test and training sample error as the model complexity is varied

The Bias-Variance Trade-Off

- A simple model might have more model bias, but
- A complex model has more model variance.

For $Y = f(X) + \epsilon$ with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma_{\epsilon}^2$, the expected prediction error of $\hat{f}(X)$ at point x_0 with squared error loss is:

$$
\begin{aligned}\n\text{Err}(x_0) &= E[(Y - \hat{f}(x_0))^2 | X = x_0] \\
&= \sigma_{\varepsilon}^2 + [\mathbf{E}\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - \mathbf{E}\hat{f}(x_0)]^2 \\
&= \sigma_{\varepsilon}^2 + \text{Bias}^2(\hat{f}(x_0)) + \text{Var}(\hat{f}(x_0)) \\
&= \text{Irreducible Error} + \text{Bias}^2 + \text{Variance.}\n\end{aligned} \tag{7.9}
$$

from Hastie et al. (2009), chapter 7.3

17 **MedBioInfo - Machine Learning Machine 19th Control** [Machine learning for small data 2](#page-0-0)

[Prediction performance](#page-2-0) [Sample splitting](#page-20-0) [Resampling methods](#page-24-0)

The Bias-Variance Trade-Off

18 MedBioInfo - Machine Learning Machine International [Machine learning for small data 2](#page-0-0)

The danger for over-fitting is higher with complex models

Linear model

- *•* Low complexity
- *•* Stable (linear) decision boundary
- *•* Generalisation error might be hardly larger than the training error

1-Nearest-neighbour method

- *•* High complexity
- *•* Unstable (highly non-linear) decision boundary
- *•* Large over-fitting likely: Generalisation error probably much larger than training error

k-Nearest-neighbour method

- $k=3$: Classify the test sample as a red triangle.
- $k=5$: Classify the test sample as a blue square.

Model building, selection and assessment

- 1. How to decide which method is the "best", i.e. has the smallest generalisation error, in a specific situation?
- 2. And how large is that smallest generalisation error anyway?
	- Model building and selection: For a variety of different methods
		- 1. Fit ("train") the models,
			- i.e. perform parameter tuning/ variable selection
		- 2. Estimate the prediction errors.
		- 3. Choose the "best" method for a specific situation.

• Model assessment

• For the final selected model estimate the generalisation error on *new data*.

Sample splitting

 \rightarrow Split data in several independent subsets before model building.

Sample splitting

In a data-rich situation, we can split the available data.

- *•* Training set: Fit ("train") the various prediction models
- *•* Validation set:
	- *•* Estimate the prediction errors of the models
	- *•* Final model: Choose model with smallest prediction error
- *•* Test set: Estimate the generalisation error by applying the final model to a new test data set

Sample splitting

Model building and selection \rightarrow

\rightarrow Model assessment

Drawbacks of sample splitting

One-time sample splitting has two basic drawbacks:

- We may not be able to afford the "luxury" of setting aside a portion of the data set for testing, as it might result in a large loss of power.
- The assessment can vary greatly when taking different splits: Since it is a single train-and-test experiment, the estimate of the error rate will be misleading if we happen to get an "unfortunate" split.

Resampling methods

- \rightarrow Cross-validation
- \rightarrow Bootstrapping

Cross-validation

- *•* Alternative to data splitting in not so data-rich situations (i.e. most of the time...)
- *•* Partition the data set into *K* roughly equal-sized subsets
- *•* Each subset will be the test data set once, with the remaining samples making up the training data

• Cross-validation error: The results are pooled from all test sets to estimate the performance of the model (each case is used exactly once).

Cross-validation

• K-fold cross-validation

• Leave-one-out cross-validation

Nested cross-validation

- Inner CV loop: Model building and selection
	- *•* Feature selection, model selection, parameter tuning
	- Choose the model with the smallest CV error within inner loop
- *•* Outer CV loop: Model assessment
	- *•* Estimate the generalisation error for the final model

29 MedBioInfo - Machine Learning [Machine learning for small data 2](#page-0-0)

from: Maros et al. (2020)

K-fold cross-validation: Training set size bias

Hypothetical learning curve:

The performance of the predictor improves as the training set size increases to about 100 observations.

Increasing this number further brings only a small benefit.

Drawbacks of cross-validation

- Leave-one-out CV: may have large variance
- *•* K-fold CV: may have large bias, depending on the choice of the number of observations to be held out from each fit. The bias is possibly severe for training set sizes *<* 50, say. If the learning curve has a considerable slope at the given training set size, 5 or 10-fold CV will strongly overestimate the true

prediction error.

• Possible solution: estimate prediction error by **bootstrapping**