Hierarchical models and structured penalties

Manuela Zucknick and Theophilus Quachie Asenso

Oslo Centre for Biostatistics and Epidemiology

- ▶ Motivation and reason for hierarchical modeling
- \blacktriangleright Structure within responses
- ▶ Structure withing the covariates (Interaction models with hierarchical properties)
- ▶ Example with MADMMplasso

Motivation and reason for hierarchical modeling

Motivation and reason for hierarchical modeling

slide by Kjetil Taskén

Motivation and reason for hierarchical modeling

- \blacktriangleright Structures in the response matrix ([\[Kim and Xing, 2012\]](#page-38-0), [[Li et al., 2015\]](#page-38-1)) for example correlations between drug responses due to similar chemical properties, drug target, drug functions, etc
- \triangleright Structures within the covariates or with a set of modifying variables ([\[Li et al., 2015](#page-38-1)], [[Tibshirani and Friedman, 2020\]](#page-39-0)) for example gene-to-gene interactions, gene-to-cancer type interactions, correlated genes, etc

How do we handle such problem?

- The response cannot be explained by only additive functions of the variables.
- **O** There is the need to consider interactions
- We also need a model that captures the correlational structure in the response and not treat each response separately.

Structure within responses

Structure within responses (with tree lasso)

$$
G_{m_5} = \{B_{j1}, B_{j2}, B_{j3}\}\n\nG_{m_4} = \{B_{j1}, B_{j2}\}\n\nG_{m_1} = \{B_{j1}\}\n\nG_{m_2} = \{B_{j2}\}\n\nG_{m_3} = \{B_{j3}\}
$$

- The set of internal and leaf nodes of the tree as M_{int} , M_{leaf} of size $|M_{int}|$ and $|M_{leaf}|$ respectively;
- \bullet The group of responses forming an internal node $m \in M_{\text{int}}$ as \mathcal{G}_m , where $\mathcal{G}_m \subseteq \{1, \ldots, D\}$ and let $\mathcal{B}^{\mathcal{G}_m}_j$ denotes the j^{th} sub-vector of B , indexed by \mathcal{G}_m with a group weight w_m .

 E ach sub-vector $B_j^{\mathcal{G}_m}$ has elements $\{B_{jd}; d \in \mathcal{G}_m\}$.

Structure within responses (with tree lasso)

The simplified version of [\[Kim and Xing, 2012\]](#page-38-0) is;

$$
\min_{B} \frac{1}{2N} \|Y - \hat{Y}\|_{F}^{2} + \lambda \sum_{j=1}^{p} \sum_{m \in M_{\text{int}}} w_{m} \|B_{j}^{\mathcal{G}_{m}}\|_{2} + \lambda \sum_{j=1}^{p} \sum_{m \in M_{\text{leaf}}} w_{m} \|B_{j}^{\mathcal{G}_{m}}\|_{2}.
$$
 (1)

Structure withing the covariates Interaction models with hierarchical properties

Interaction models with hierarchical properties

The hierNet model [\[Bien et al., 2013](#page-37-0)]

$$
y = \beta_0 + \sum_{j}^{p} \beta_j X_j + \frac{1}{2} \sum_{j \neq k} \Theta_{jk} X_j X_k + \epsilon,
$$
\n(2)

where $\epsilon \sim \mathbb{N}(0, \sigma^2)$, $\beta \in \mathbb{R}^p$, $\Theta \in \mathbb{R}^{p \times p}$ and $\Theta_{jj} = 0$.

$$
\min_{\beta_0 \in \mathbb{R}, \beta^{\pm} \in \mathbb{R}^p, \Theta \in \mathbb{R}^{p \times p}} \ell(\beta_0, \beta, \Theta) + \lambda \sum_j \max\{|\beta_j|, \|\Theta_j\|_1\} + \frac{\lambda}{2} |\Theta\|_1
$$
\n(3)

Glinternet

Consider a dataset containing **y** response and two categorical variables F_1 , F_2 with p_1 , p_2 levels. Let X_1 , X_2 be their corresponding indicator matrices with p_1 , p_2 columns respectively.

Interaction models with hierarchical properties

The GLINTERNET model [[Lim and Hastie, 2015\]](#page-38-2)

$$
\min_{\mu,\alpha,\tilde{\alpha}} \frac{1}{2} \left\| \mathbf{y} - \mathbf{1}\mu - \mathbf{X}_1 \alpha_1 - \mathbf{X}_2 \alpha_2 - \left[\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_{1:2} \right] \left[\begin{array}{c} \tilde{\alpha}_1 \\ \tilde{\alpha}_2 \\ \alpha_{1:2} \end{array} \right] \right\|_2^2 + \lambda (\|\alpha_1\|_2 + \|\alpha_2\|_2 + \sqrt{\rho_1 \|\tilde{\alpha}_1\|_2^2 + \rho_2 \|\tilde{\alpha}_2\|_2^2 + \|\alpha_{1:2}\|_2^2}) \tag{4}
$$

subject to
$$
\sum_{i=1}^{p_1} \alpha_1^i = 0, \quad \sum_{j=1}^{p_2} \alpha_2^j = 0, \quad , \sum_{i=1}^{p_1} \tilde{\alpha}_1^i = 0, \quad \sum_{j=1}^{p_2} \tilde{\alpha}_2^j = 0
$$
(5)
and
$$
\sum_{i=1}^{p_1} \alpha_{1:2}^{ij} = 0 \quad \text{for fixed} \quad j, \quad \sum_{j=1}^{p_2} \alpha_{1:2}^{ij} = 0 \quad \text{for fixed} \quad i,
$$
(6)

The GLINTERNET model [[Lim and Hastie, 2015\]](#page-38-2)

GLINTERNET can be solved as an unconstrained group lasso problem by using the following equivalent objective function;

$$
\underset{\mu,\beta}{\text{argmin}}\frac{1}{2}\|\textbf{y}-\textbf{1}\mu-\textbf{X}_1\beta_1-\textbf{X}_2\beta_2-\textbf{X}_{1:2}\beta_{1:2}\|_2^2
$$

 $+ \lambda (||\beta_1||_2 + ||\beta_2||_2 + ||\beta_{1:2}||_2)$ (7)

Interaction models with hierarchical properties (Pliable lasso)

y ∈ R *^N*, *X ∈* R *N×p* and *Z ∈* R *^N×K*.The pliable lasso [[Tibshirani and Friedman, 2020\]](#page-39-0) model is given as;

(8)

$$
\hat{y} = \beta_0 \mathbf{1} + Z\theta_0 + \sum_{j=1}^p X_j(\beta_j \mathbf{1} + Z\theta_j)
$$

= $\beta_0 + Z\theta_0 + X\beta + \sum_{j=1}^p (X_j \odot Z)\theta_j$,

where $(X_i \odot Z)$ denoting the $N \times K$ matrix formed by multiplying each column of Z component-wise by the column vector *X^j* .

Interaction models with hierarchical properties (Pliable lasso)

The pliable lasso objective function

$$
M(\beta_0, \theta_0, \beta, \theta) = \frac{1}{2N} \sum_{i} (y_i - \hat{y}_i)^2
$$

+ $(1 - \alpha)\lambda \sum_{j=1}^{p} (\left\|(\beta_j, \theta_j)\right\|_2 + \|\theta_j\|_2) + \alpha \lambda \sum_{j,k} |\theta_{j,k}|$ (9)

- *y*_{*i*} is the element of the fitted model $\beta_0 \mathbf{1} + Z\theta_0 + \sum_{j=1}^p X_j (\beta_j \mathbf{1} + Z\theta_j)$.
- Overlapping group ensures **(asymmetric) weak hierarchy constraint**.

Table: Hierarchical Sparse modeling (HSM) methods

Example with MADMMplasso

Example with MADMMplasso

- Let $B \in \mathbb{R}^{D \times p \times (K+1)}$.
- $\textsf{The} \,\, j^{th}$ row of B_d defined as $B_{jd} = [\beta_{jd}, \theta_{jd}] \in \mathbb{R}^{K+1}.$
- Let *W* be an $N \times p \times (1 + K)$

$$
W_{i,j,k} = \begin{cases} X_{ij} Z_{ik} & \text{for } k \neq 1 \\ X_{ij} & \text{for } k = 1, \end{cases}
$$
 (10)

$$
k = 1, 2, ..., K + 1.
$$

$$
\hat{Y} = 1\beta_0^T + Z\theta + W * B,
$$
 (11)

where $W * B = [W * B_1 : W * B_2 : \ldots : W * B_D]$ to denote $N \times D$ matrix whose *i*, *d* element takes the form

$$
(W * B)id = \sum_{j=1}^{p} \sum_{k=1}^{K+1} W_{i,j,k} B_{jkd}, \quad i = 1, 2, ..., N, \quad d = 1, 2, ..., D.
$$
 (12)

 $B \in \mathbb{R}^{D \times p \times (K+1)}$.

The general multi-response pliable lasso model can be written as

$$
\min_{B \in \mathbb{R}^{D \times p \times (1 + K)}} \quad \frac{1}{2N} \|Y - \hat{Y}\|_F^2 + \sum_{d=1}^p \left[(1 - \alpha) \lambda \sum_{j=1}^p (||B_{jd}||_2 + ||B_{j(-1)d}||_2) + \alpha \lambda \sum_{j=1}^p ||B_{j(-1)d}||_1 \right] \tag{13}
$$

Example with MADMMplasso

Combining (13) and (1) :

$$
\min_{B \in \mathbb{R}^{D \times p \times (1 + K)}} \frac{1}{2N} \|Y - \hat{Y}\|_F^2 + \lambda_1 \sum_{j=1}^p \sum_{m \in M_{int}} w_m \|B_j^{G_m}\|_2 + \lambda_1 \sum_{j=1}^p \sum_{m \in M_{leaf}} w_m \|B_j^{G_m}\|_2 + \sum_{j=1}^D \|Y - \hat{Y}\|_2^2 + \sum_{j=1}^D \|Y - \hat{Y}\|_2^2 + \sum_{j=1}^D \|Y - \hat{Y}\|_2^2 + \sum_{j=1}^P \|Y - \hat{Y}\|_2^
$$

We use **ADMM** [\[Boyd et al., 2011\]](#page-37-1): "The **alternating direction method of multipliers (ADMM)** is an algorithm that solves convex optimization problems by breaking them into smaller pieces, each of which are then easier to handle. It has recently found wide application in a number of areas." (https://stanford.edu/ boyd/admm.html)

Given a separable objective function

$$
\min_{\beta} f(\beta) + h(\beta),\tag{15}
$$

• Introduce auxiliary variable ω to solve ([15\)](#page-22-0) as $\min_{\beta,\omega} f(\beta) + h(\omega)$ s.t $\beta = \omega$. (16)

The problem in (16) (16) can have a corresponding augmented Lagrangian in the form

$$
L(\beta,\omega,\gamma) = f(\beta) + h(\omega) + \gamma^T(\beta - \omega) + (\rho/2)\|\beta - \omega\|_2^2.
$$
 (17)

The ADMM algorithm updates *β* and *ω* in an alternating or sequential manner in the following way until convergence condition is met.

$$
\beta^{t+1} = \underset{\beta}{\arg \min} \quad L(\beta, \omega^t, \gamma^t)
$$

\n
$$
\omega^{t+1} = \underset{\omega}{\arg \min} \quad L(\beta^{t+1}, \omega, \gamma^t)
$$

\n
$$
\gamma^{t+1} = \gamma^t + \rho(\beta^{t+1} - \omega^{t+1}).
$$
\n(18)

Example with MADMMplasso

$$
L(B, E, \tilde{E}, V, Q, H, \tilde{H}, O, P) = \frac{1}{2N} ||Y - \hat{Y}||_F^2 +
$$

\n
$$
\lambda_1 \sum_{j=1}^p \sum_{m \in M_{int}} w_m ||E_j^{\mathcal{G}_m}||_2 + \lambda_2 \sum_d \sum_{j=1}^p w_d ||\tilde{E}_d||_2
$$

\n
$$
+ \sum_d (1 - \alpha)\lambda_3 \sum_{j=1}^p \sum_s ||V_{jd}^c||_2 + \alpha \lambda_3 \sum_{j=1}^p ||Q_{jd}||_1 + \sum_j H_j^T(\tilde{B}_j - E_j) + \sum_d \langle \tilde{H}_d, B_d - \tilde{E}_d \rangle
$$

\n
$$
+ \sum_d \sum_j O_{jd}^T(\tilde{B}_{jd} - V_{jd}) + \sum_d \langle P_d, B_d - Q_d \rangle
$$

\n
$$
+ \frac{\rho}{2} \sum_j ||\tilde{B}_j - E_j||_2^2 + \frac{\rho}{2} \sum_d ||B_d - \tilde{E}_d||_2^2 + \frac{\rho}{2} \sum_d \sum_j \sum_s ||\tilde{B}_{jd}^s - V_{jd}^s||_2^2 + \frac{\rho}{2} \sum_d ||B_d - Q_d||_2^2.
$$
\n(19)

Example with MADMMplasso

 $D = 7, p = 500, K = 4, N = 100$ $D = 24$, $p = 150$, 500, $K = 4$, $N = 100$

Simulated correlation structure of D drug response variables across N cell lines for simulated data set 1 (left) and 2 (right)."

Example with MADMMplasso: Results for simulated data set 1

Table: Results from the multi-response simulation 1 with weak hierarchical structure in the response.

 1 Sensitivity is the proportion of non-zero coefficients estimated as non-zeros.

² Specificity is the proportion of zero-coefficients estimated as zeros.

 3 The total number of non-zero coefficients in the model. We counted the coefficients with at least two non-zero values across the 10 simulations.

 \dim Number of non-zero coefficients $= \sum_{j=1}^p\sum_{d=1}^D \{(\sum_{r=1}^{10} {\bf 1}_{\{\beta_{jd}^r\neq 0\}})\geq 2\}.$ Note that the selection is out of $p \times D = 3000$ features in total.

⁴ The MSE on an independent test dataset. We include the standard deviation (SD) across the 10 simulations.

Example with MADMMplasso: Results for simulated data set 2

a True structure b MADMMplasso

c plasso d Tree lasso

Example with MADMMplasso: Results for simulated data set 2

Table: Results from the multi-response simulation 2 with strong hierarchical structure in the responses.

 1 Sensitivity is the proportion of non-zero coefficients estimated as non-zeros.

 2 Specificity is the proportion of zero-coefficients estimated as zeros.

 3 Number of non-zero coefficients $= \sum_{j=1}^p\sum_{d=1}^D \{(\sum_{r=1}^{10}\mathbf{1}_{\{\beta_{jd}'\neq 0\}})\geq 2\}.$ Note that the selection is out of $p \times D = 3600$ (for $p = 150$) or 12000 (for $p = 500$) features in total.

⁴ The MSE on an independent test dataset. We included the standard deviation (SD) across the 10 simulations.

'Genomics of drug sensitivity in cancer' [\[Garnett et al., 2012](#page-37-2)]

- Large-scale pharmacogenomic study with $N = 498$ cell lines and $D = 97$ drugs (we used 7 drugs).
- Outcome data: $log(IC_{50})$ from dose-response experiments
- Random draws of 80% cell lines as training data and 20% as validation data.
- **Input data:** *Z* as cancer types (13 cancer types, $K = 12$), *X* as mRNA expression (p=2602)

Example with MADMMplasso: Real data: Drug information

- **PD-0325901, RDEA119, CI-1040, AZD6244**: MEK1 inhibitors with highly correlated IC50 values.
- **Methotrexate:** general cytotoxic drug not targeted to specific genes/pathways
- **Nilotinib:** inhibits the BCR-ABL fusion gene characteristic for chronic myeloid leukemia. Related to Axitinib (smaller effect)

Example with MADMMplasso: Real data

lines

GDSC [[Garnett et al., 2012\]](#page-37-2)

Table: Results from the GDSC data.

 1 The number of non-zero coefficients in the model. We counted the coefficients with at least two non-zero values across the 10 repeated data splits. Number of non-zero coef- $\text{ficients} = \sum_{j=1}^p\sum_{d=1}^D \{(\sum_{r=1}^{10}\mathbf{1}_{\{\beta_{jd}^r\neq 0\}}) \geq 2\}$ Note that the selection is out of $p \times D = 18844$ features in total.

² The MSE on an independent test data. We included the standard deviation (SD) across the 10 repeated data splits.

Example with MADMMplasso: Real data : Selected interaction effects for Nilotinib

Suppressor of cytokine signaling 2 (SOCS2) is involved in the signal transduction cascades in CML cells [\[Schultheis et al., 2002\]](#page-39-1)

Example with MADMMplasso: Real data: Summary of all selected interaction effects

GDSC [[Garnett et al., 2012\]](#page-37-2)

Summary

- We have considered problems with hierarchical structures.
- **•** The model involved main and interaction effects.
- The response cannot be explained by additive functions of the variables hence the need for hierarchical modeling.
- The procedure involved the implementation of the **pliable lasso penalty**.
- Our extensions
	- ▶ **Multi-response problem** with **tree-guided structure**.
	- **►** The implementation of the **ADMM algorithm** made it possible to handle the overlapping groups in both the covariates and the responses.
	- ▶ The R package (**MADMMplasso**) is publicly available on https://github.com/ocbe-uio/MADMMplasso

Email: t.q.asenso@medisin.uio.no

This work received funding from the European Union's Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Actions Grant, agreement No. 80113 (Scientia fellowship)

References I

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical interactions. *The Annals of Statistics*, 41(3):1111–1141.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).

Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine learning*, 3(1):1–122.

Garnett, M. J., Edelman, E. J., Heidorn, S. J., Greenman, C. D., Dastur, A., Lau, K. W., Greninger, P., Thompson, I. R., Luo, X., Soares, J., et al. (2012). Systematic identification of genomic markers of drug sensitivity in cancer cells. *Nature*, 483(7391):570–575.

References II

Kim, S. and Xing, E. P. (2012).

Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eqtl mapping.

The Annals of Applied Statistics, 6(3):1095–1117.

Li, Y., Nan, B., and Zhu, J. (2015).

Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

Biometrics, 71(2):354–363.

Lim, M. and Hastie, T. (2015).

Learning interactions via hierarchical group-lasso regularization.

Journal of Computational and Graphical Statistics, 24(3):627–654. PMID: 26759522.

Schultheis, B., Carapeti-Marootian, M., Hochhaus, A., Weisser, A., Goldman, J. M., and Melo, J. V. (2002).

Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism.

Blood, 99(5):1766–1775.

Tibshirani, R. and Friedman, J. (2020).

A pliable lasso.

Journal of Computational and Graphical Statistics, 29(1):215–225.

THANK YOU