Calculates the cumulative probability for a given truncated distribution
Usage
ptrunc(q, family, ..., lower.tail = TRUE, log.p = FALSE)
ptruncnorm(
q,
mean = 0,
sd = 1,
a = -Inf,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncbeta(
q,
shape1,
shape2,
a = 0,
b = 1,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncbinom(
q,
size,
prob,
a = 0,
b = size,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncpois(q, lambda, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptruncchisq(q, df, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptrunccontbern(q, lambda, a = 0, b = 1, ...)
ptruncexp(q, rate = 1, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
ptruncgamma(
q,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncinvgamma(
q,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncinvgauss(q, m, s, a = 0, b = Inf, ...)
ptrunclnorm(
q,
meanlog = 0,
sdlog = 1,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
ptruncnbinom(
q,
size,
prob,
mu,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
Arguments
- q
vector of quantiles
- family
distribution family to use
- ...
named distribution parameters and/or truncation limits (
a
,b
)- lower.tail
logical; if
TRUE
, probabilities are \(P(X <= x)\) otherwise, \(P(X > x)\)- log.p
logical; if
TRUE
, probabilities p are given aslog(p)
- mean
mean of parent distribution
- sd
standard deviation is parent distribution
- a
point of left truncation. For discrete distributions,
a
will be included in the support of the truncated distribution.- b
point of right truncation
- shape1
positive shape parameter alpha
- shape2
positive shape parameter beta
- size
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
- prob
probability of success on each trial
- lambda
mean and var of "parent" distribution
- df
degrees of freedom for "parent" distribution
- rate
inverse gamma rate parameter
- shape
inverse gamma shape parameter
- scale
inverse gamma scale parameter
- m
vector of means
- s
vector of dispersion parameters
- meanlog
mean of untruncated distribution
- sdlog
standard deviation of untruncated distribution
- mu
alternative parametrization via mean
Examples
ptrunc(0)
#> [1] 0.5
ptrunc(6, family = "gaussian", mean = 5, sd = 10, b = 7)
#> [1] 0.9319271
pnorm(6, mean = 5, sd = 10) # for comparison
#> [1] 0.5398278