Calculates quantile for a given truncated distribution and probability.
Usage
qtrunc(p, family, ..., lower.tail = TRUE, log.p = FALSE)
qtruncbeta(
p,
shape1,
shape2,
a = 0,
b = 1,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncbinom(
p,
size,
prob,
a = 0,
b = size,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncchisq(p, df, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
qtrunccontbern(p, lambda, a = 0, b = 1, ..., lower.tail = TRUE, log.p = FALSE)
qtruncexp(p, rate = 1, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
qtruncgamma(
p,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncinvgamma(
p,
shape,
rate = 1,
scale = 1/rate,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncinvgauss(p, m, s, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
qtrunclnorm(
p,
meanlog = 0,
sdlog = 1,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncnbinom(
p,
size,
prob,
mu,
a = 0,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncnorm(
p,
mean = 0,
sd = 1,
a = -Inf,
b = Inf,
...,
lower.tail = TRUE,
log.p = FALSE
)
qtruncpois(p, lambda, a = 0, b = Inf, ..., lower.tail = TRUE, log.p = FALSE)
Arguments
- p
vector of quantiles
- family
distribution family to use
- ...
named distribution parameters and/or truncation limits (
a
,b
)- lower.tail
logical; if
TRUE
, probabilities are \(P(X <= x)\) otherwise, \(P(X > x)\)- log.p
logical; if
TRUE
, probabilities p are given aslog(p)
- shape1
positive shape parameter alpha
- shape2
positive shape parameter beta
- a
point of left truncation. For discrete distributions,
a
will be included in the support of the truncated distribution.- b
point of right truncation
- size
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
- prob
probability of success on each trial
- df
degrees of freedom for "parent" distribution
- lambda
mean and var of "parent" distribution
- rate
inverse gamma rate parameter
- shape
inverse gamma shape parameter
- scale
inverse gamma scale parameter
- m
vector of means
- s
vector of dispersion parameters
- meanlog
mean of untruncated distribution
- sdlog
standard deviation of untruncated distribution
- mu
alternative parametrization via mean
- mean
mean of parent distribution
- sd
standard deviation is parent distribution
Examples
qtrunc(0.75)
#> [1] 0.6744898
qtrunc(.2, family = "gaussian", mean = 5, sd = 10, b = 7)
#> [1] -6.959812
qnorm(.2, mean = 5, sd = 10) # for comparison
#> [1] -3.416212