Skip to contents

The synergyscreen provides a work flow for data from big drug combination screens, where multiple drugs are tested in combination on multiple cell lines. It takes as input a list of experiments, each entry being a list containing the necessary elements needed for a call to the main regression function bayesynergy.

Melanoma cell line example

Included in the package is the result of a synergyscreen run of 583 drug combinations on the A-375 human melanoma cell line from ONeil et al. (2016). The synergyscreen object is a list with two entries, a dataframe with parameter estimates from each experiment, and a list entitled failed – containing experiments that either failed completely to process, or had an unsatisfactory fit.

library(bayesynergy)
data("ONeil_A375")
length(ONeil_A375$failed)
## [1] 2

We see that the dataset has two experiments that failed to process, during an initial run of synergyscreen. There’s a multitude of reasons why an experiment might fail to process, it could be an input error, initialization problems or problems with the parallel processing.

The entries of failed are themselves lists, each containing the necessary information to process through the bayesynergy function

failed_experiment = ONeil_A375$failed[[1]]
names(failed_experiment)
## [1] "y"             "x"             "drug_names"    "experiment_ID"
head(cbind(failed_experiment$y,failed_experiment$x))
##      viability L778123 MK-4827
## [1,]     0.759   0.325   0.223
## [2,]     0.755   0.325   0.775
## [3,]     0.548   0.325   2.750
## [4,]     0.307   0.325  10.000
## [5,]     0.787   0.800   0.223
## [6,]     0.820   0.800   0.775

We can rerun experiments that failed to process, by simply passing the returned synergyscreen object back into the function. Note that we turn of the default options of saving each fit and plotting everything, and set method = "vb" indicating we use variational inference to fit the model.

fit_screen = synergyscreen(ONeil_A375, save_raw = F, save_plots = F, parallel = F, 
                           bayesynergy_params = list(method = "vb"))
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000402 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 4.02 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000306 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.06 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000265 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.65 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: Success! Found best value [eta = 0.1].
## Chain 1: 
## Chain 1: Begin stochastic gradient ascent.
## Chain 1:   iter             ELBO   delta_ELBO_mean   delta_ELBO_med   notes 
## Chain 1:    100        -4860.788             1.000            1.000
## Chain 1:    200       -10126.267             0.760            1.000
## Chain 1:    300        -5561.405             0.780            0.821
## Chain 1:    400        -5530.223             0.587            0.821
## Chain 1:    500        -4317.703             0.525            0.520
## Chain 1:    600        -7811.948             0.512            0.520
## Chain 1:    700        -4960.627             0.521            0.520
## Chain 1:    800        -4268.776             0.476            0.520
## Chain 1:    900        -4957.297             0.439            0.447
## Chain 1:   1000        -3895.517             0.422            0.447
## Chain 1:   1100        -3266.061             0.342            0.281
## Chain 1:   1200        -2129.613             0.343            0.281
## Chain 1:   1300        -2725.341             0.283            0.273
## Chain 1:   1400        -1851.887             0.329            0.281
## Chain 1:   1500        -2584.757             0.330            0.284
## Chain 1:   1600        -2055.410             0.311            0.273
## Chain 1:   1700        -2347.692             0.266            0.258
## Chain 1:   1800        -2168.106             0.258            0.258
## Chain 1:   1900        -1911.069             0.257            0.258
## Chain 1:   2000        -1876.216             0.232            0.219
## Chain 1:   2100        -1597.373             0.230            0.219
## Chain 1:   2200        -2008.067             0.197            0.205
## Chain 1:   2300        -1361.956             0.223            0.205
## Chain 1:   2400        -1502.685             0.185            0.175
## Chain 1:   2500        -1292.627             0.173            0.163
## Chain 1:   2600        -2192.369             0.188            0.163
## Chain 1:   2700        -1110.858             0.273            0.175
## Chain 1:   2800        -1500.580             0.291            0.205
## Chain 1:   2900        -1066.382             0.318            0.260
## Chain 1:   3000        -1151.814             0.323            0.260
## Chain 1:   3100        -1195.934             0.310            0.260
## Chain 1:   3200        -1049.637             0.303            0.260
## Chain 1:   3300        -1004.046             0.260            0.163
## Chain 1:   3400        -1514.632             0.285            0.260
## Chain 1:   3500         -892.361             0.338            0.337
## Chain 1:   3600        -1069.318             0.314            0.260
## Chain 1:   3700         -799.804             0.250            0.260
## Chain 1:   3800         -968.228             0.241            0.174
## Chain 1:   3900        -1135.559             0.215            0.165
## Chain 1:   4000         -959.012             0.226            0.174
## Chain 1:   4100         -829.659             0.238            0.174
## Chain 1:   4200         -750.800             0.235            0.174
## Chain 1:   4300         -832.245             0.240            0.174
## Chain 1:   4400         -868.118             0.211            0.165
## Chain 1:   4500         -681.331             0.168            0.165
## Chain 1:   4600         -654.109             0.156            0.156
## Chain 1:   4700         -593.368             0.132            0.147
## Chain 1:   4800         -708.854             0.131            0.147
## Chain 1:   4900         -657.695             0.124            0.105
## Chain 1:   5000         -590.246             0.117            0.105
## Chain 1:   5100         -604.318             0.104            0.102
## Chain 1:   5200         -665.249             0.103            0.098
## Chain 1:   5300         -745.381             0.104            0.102
## Chain 1:   5400         -543.667             0.137            0.108
## Chain 1:   5500         -590.189             0.117            0.102
## Chain 1:   5600         -605.695             0.116            0.102
## Chain 1:   5700         -507.219             0.125            0.108
## Chain 1:   5800         -612.470             0.126            0.108
## Chain 1:   5900         -557.804             0.128            0.108
## Chain 1:   6000         -553.142             0.117            0.098
## Chain 1:   6100         -681.902             0.134            0.108
## Chain 1:   6200         -573.949             0.143            0.172
## Chain 1:   6300         -540.277             0.139            0.172
## Chain 1:   6400         -443.817             0.123            0.172
## Chain 1:   6500         -578.591             0.139            0.188
## Chain 1:   6600         -413.764             0.176            0.189
## Chain 1:   6700         -431.288             0.161            0.188
## Chain 1:   6800         -494.692             0.156            0.188
## Chain 1:   6900         -463.815             0.153            0.188
## Chain 1:   7000         -432.226             0.160            0.188
## Chain 1:   7100         -398.188             0.149            0.128
## Chain 1:   7200         -440.302             0.140            0.096
## Chain 1:   7300         -421.724             0.138            0.096
## Chain 1:   7400         -447.638             0.122            0.085
## Chain 1:   7500         -400.582             0.111            0.085
## Chain 1:   7600         -415.116             0.074            0.073
## Chain 1:   7700         -431.546             0.074            0.073
## Chain 1:   7800         -440.883             0.063            0.067
## Chain 1:   7900         -437.082             0.058            0.058
## Chain 1:   8000         -427.175             0.053            0.044
## Chain 1:   8100         -451.642             0.050            0.044
## Chain 1:   8200         -344.162             0.071            0.044
## Chain 1:   8300         -336.808             0.069            0.038
## Chain 1:   8400         -338.868             0.064            0.035
## Chain 1:   8500         -360.947             0.058            0.035
## Chain 1:   8600         -378.831             0.059            0.038
## Chain 1:   8700         -302.918             0.081            0.047
## Chain 1:   8800         -349.337             0.092            0.054
## Chain 1:   8900         -348.412             0.091            0.054
## Chain 1:   9000         -293.931             0.107            0.061
## Chain 1:   9100         -344.485             0.117            0.133
## Chain 1:   9200         -308.051             0.097            0.118
## Chain 1:   9300         -320.628             0.099            0.118
## Chain 1:   9400         -303.323             0.104            0.118
## Chain 1:   9500         -334.784             0.107            0.118
## Chain 1:   9600         -293.070             0.117            0.133
## Chain 1:   9700         -311.054             0.098            0.118
## Chain 1:   9800         -280.948             0.095            0.107
## Chain 1:   9900         -280.061             0.095            0.107
## Chain 1:   10000         -288.767             0.080            0.094
## Chain 1: Informational Message: The maximum number of iterations is reached! The algorithm may not have converged.
## Chain 1: This variational approximation is not guaranteed to be meaningful.
## Chain 1: 
## Chain 1: Drawing a sample of size 1000 from the approximate posterior... 
## Chain 1: COMPLETED.
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000316 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.16 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000259 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.59 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: Success! Found best value [eta = 0.1].
## Chain 1: 
## Chain 1: Begin stochastic gradient ascent.
## Chain 1:   iter             ELBO   delta_ELBO_mean   delta_ELBO_med   notes 
## Chain 1:    100        -1740.278             1.000            1.000
## Chain 1:    200         -883.230             0.985            1.000
## Chain 1:    300        -1174.491             0.739            0.970
## Chain 1:    400         -852.065             0.649            0.970
## Chain 1:    500         -959.049             0.542            0.378
## Chain 1:    600         -821.924             0.479            0.378
## Chain 1:    700        -1108.896             0.448            0.259
## Chain 1:    800         -788.226             0.443            0.378
## Chain 1:    900         -752.925             0.399            0.259
## Chain 1:   1000         -760.918             0.360            0.259
## Chain 1:   1100         -736.928             0.263            0.248
## Chain 1:   1200         -673.625             0.175            0.167
## Chain 1:   1300         -669.215             0.151            0.112
## Chain 1:   1400         -794.585             0.129            0.112
## Chain 1:   1500         -624.534             0.145            0.158
## Chain 1:   1600         -598.237             0.133            0.094
## Chain 1:   1700         -679.851             0.119            0.094
## Chain 1:   1800         -575.220             0.097            0.094
## Chain 1:   1900         -613.729             0.098            0.094
## Chain 1:   2000         -616.162             0.098            0.094
## Chain 1:   2100         -651.031             0.100            0.094
## Chain 1:   2200         -567.211             0.105            0.120
## Chain 1:   2300         -744.950             0.128            0.148
## Chain 1:   2400         -560.266             0.145            0.148
## Chain 1:   2500         -606.584             0.126            0.120
## Chain 1:   2600         -563.640             0.129            0.120
## Chain 1:   2700         -532.267             0.123            0.076
## Chain 1:   2800         -627.207             0.120            0.076
## Chain 1:   2900         -477.556             0.145            0.148
## Chain 1:   3000         -536.006             0.155            0.148
## Chain 1:   3100         -542.696             0.151            0.148
## Chain 1:   3200         -527.549             0.139            0.109
## Chain 1:   3300         -507.293             0.120            0.076
## Chain 1:   3400         -502.618             0.088            0.076
## Chain 1:   3500         -495.865             0.081            0.059
## Chain 1:   3600         -505.255             0.076            0.040
## Chain 1:   3700         -515.305             0.072            0.029
## Chain 1:   3800         -492.210             0.061            0.029
## Chain 1:   3900         -508.379             0.033            0.029
## Chain 1:   4000         -494.316             0.025            0.028
## Chain 1:   4100         -464.703             0.030            0.029
## Chain 1:   4200         -481.386             0.031            0.032
## Chain 1:   4300         -573.361             0.043            0.032
## Chain 1:   4400         -487.944             0.059            0.035
## Chain 1:   4500         -453.269             0.066            0.047
## Chain 1:   4600         -455.245             0.064            0.047
## Chain 1:   4700         -450.021             0.063            0.047
## Chain 1:   4800         -434.506             0.062            0.036
## Chain 1:   4900         -461.114             0.065            0.058
## Chain 1:   5000         -460.708             0.062            0.058
## Chain 1:   5100         -436.157             0.061            0.056
## Chain 1:   5200         -400.749             0.067            0.058
## Chain 1:   5300         -481.626             0.067            0.058
## Chain 1:   5400         -439.459             0.060            0.058
## Chain 1:   5500         -458.603             0.056            0.056
## Chain 1:   5600         -435.841             0.061            0.056
## Chain 1:   5700         -426.247             0.062            0.056
## Chain 1:   5800         -442.995             0.062            0.056
## Chain 1:   5900         -405.141             0.066            0.056
## Chain 1:   6000         -425.115             0.070            0.056
## Chain 1:   6100         -473.757             0.075            0.088
## Chain 1:   6200         -395.644             0.086            0.093
## Chain 1:   6300         -409.774             0.073            0.052
## Chain 1:   6400         -402.019             0.065            0.047
## Chain 1:   6500         -385.313             0.065            0.047
## Chain 1:   6600         -418.965             0.068            0.047
## Chain 1:   6700         -394.287             0.072            0.063
## Chain 1:   6800         -385.328             0.070            0.063
## Chain 1:   6900         -418.699             0.069            0.063
## Chain 1:   7000         -361.886             0.080            0.080
## Chain 1:   7100         -358.030             0.071            0.063
## Chain 1:   7200         -368.963             0.054            0.043
## Chain 1:   7300         -354.685             0.055            0.043
## Chain 1:   7400         -394.876             0.063            0.063
## Chain 1:   7500         -405.902             0.061            0.063
## Chain 1:   7600         -370.953             0.063            0.063
## Chain 1:   7700         -392.190             0.062            0.054
## Chain 1:   7800         -423.907             0.067            0.075
## Chain 1:   7900         -348.140             0.081            0.075
## Chain 1:   8000         -351.915             0.066            0.054
## Chain 1:   8100         -410.714             0.079            0.075
## Chain 1:   8200         -372.081             0.087            0.094
## Chain 1:   8300         -391.642             0.088            0.094
## Chain 1:   8400         -345.930             0.091            0.094
## Chain 1:   8500         -373.147             0.095            0.094
## Chain 1:   8600         -371.905             0.086            0.075
## Chain 1:   8700         -341.658             0.090            0.089
## Chain 1:   8800         -381.708             0.093            0.104
## Chain 1:   8900         -347.128             0.081            0.100
## Chain 1:   9000         -364.200             0.085            0.100
## Chain 1:   9100         -328.459             0.081            0.100
## Chain 1:   9200         -318.881             0.074            0.089
## Chain 1:   9300         -351.735             0.078            0.093
## Chain 1:   9400         -328.591             0.072            0.089
## Chain 1:   9500         -352.075             0.071            0.089
## Chain 1:   9600         -362.543             0.074            0.089
## Chain 1:   9700         -335.201             0.073            0.082
## Chain 1:   9800         -331.359             0.064            0.070
## Chain 1:   9900         -345.581             0.058            0.067
## Chain 1:   10000         -355.387             0.056            0.067
## Chain 1: Informational Message: The maximum number of iterations is reached! The algorithm may not have converged.
## Chain 1: This variational approximation is not guaranteed to be meaningful.
## Chain 1: 
## Chain 1: Drawing a sample of size 1000 from the approximate posterior... 
## Chain 1: COMPLETED.
## Chain 1: ------------------------------------------------------------
## Chain 1: EXPERIMENTAL ALGORITHM:
## Chain 1:   This procedure has not been thoroughly tested and may be unstable
## Chain 1:   or buggy. The interface is subject to change.
## Chain 1: ------------------------------------------------------------
## Chain 1: 
## Chain 1: 
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000321 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.21 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Begin eta adaptation.
## Chain 1: Iteration:   1 / 250 [  0%]  (Adaptation)
## Chain 1: Iteration:  50 / 250 [ 20%]  (Adaptation)
## Chain 1: Iteration: 100 / 250 [ 40%]  (Adaptation)
## Chain 1: Iteration: 150 / 250 [ 60%]  (Adaptation)
## Chain 1: Iteration: 200 / 250 [ 80%]  (Adaptation)
## Chain 1: Iteration: 250 / 250 [100%]  (Adaptation)
## Chain 1: Success! Found best value [eta = 0.1].
## Chain 1: 
## Chain 1: Begin stochastic gradient ascent.
## Chain 1:   iter             ELBO   delta_ELBO_mean   delta_ELBO_med   notes 
## Chain 1:    100         -840.096             1.000            1.000
## Chain 1:    200         -480.433             0.874            1.000
## Chain 1:    300         -639.272             0.666            0.749
## Chain 1:    400         -821.495             0.555            0.749
## Chain 1:    500         -578.721             0.528            0.420
## Chain 1:    600         -895.460             0.499            0.420
## Chain 1:    700        -1271.501             0.470            0.354
## Chain 1:    800         -445.018             0.643            0.420
## Chain 1:    900         -517.479             0.587            0.354
## Chain 1:   1000         -410.798             0.554            0.354
## Chain 1:   1100         -557.552             0.481            0.296
## Chain 1:   1200         -477.736             0.423            0.263
## Chain 1:   1300         -430.359             0.409            0.263
## Chain 1:   1400         -405.340             0.393            0.263
## Chain 1:   1500         -605.161             0.384            0.263
## Chain 1:   1600         -323.551             0.436            0.263
## Chain 1:   1700         -421.450             0.429            0.260
## Chain 1:   1800         -382.934             0.254            0.232
## Chain 1:   1900         -398.451             0.243            0.232
## Chain 1:   2000         -353.770             0.230            0.167
## Chain 1:   2100         -391.602             0.213            0.126
## Chain 1:   2200         -370.174             0.202            0.110
## Chain 1:   2300         -423.666             0.204            0.126
## Chain 1:   2400         -413.249             0.200            0.126
## Chain 1:   2500         -347.253             0.186            0.126
## Chain 1:   2600         -361.776             0.103            0.101
## Chain 1:   2700         -354.107             0.082            0.097
## Chain 1:   2800         -322.251             0.082            0.097
## Chain 1:   2900         -339.203             0.083            0.097
## Chain 1:   3000         -373.944             0.080            0.093
## Chain 1:   3100         -256.972             0.116            0.093
## Chain 1:   3200         -273.861             0.116            0.093
## Chain 1:   3300         -356.905             0.127            0.093
## Chain 1:   3400         -289.865             0.147            0.099
## Chain 1:   3500         -282.025             0.131            0.093
## Chain 1:   3600         -274.295             0.130            0.093
## Chain 1:   3700         -312.355             0.140            0.099
## Chain 1:   3800         -304.688             0.133            0.093
## Chain 1:   3900         -282.474             0.136            0.093
## Chain 1:   4000         -326.621             0.140            0.122
## Chain 1:   4100         -227.638             0.138            0.122
## Chain 1:   4200         -293.713             0.154            0.135
## Chain 1:   4300         -238.639             0.154            0.135
## Chain 1:   4400         -261.939             0.140            0.122
## Chain 1:   4500         -282.993             0.144            0.122
## Chain 1:   4600         -215.268             0.173            0.135
## Chain 1:   4700         -182.044             0.179            0.183
## Chain 1:   4800         -225.611             0.196            0.193
## Chain 1:   4900         -216.872             0.192            0.193
## Chain 1:   5000         -230.731             0.184            0.193
## Chain 1:   5100         -205.898             0.153            0.183
## Chain 1:   5200         -266.060             0.153            0.183
## Chain 1:   5300         -241.290             0.140            0.121
## Chain 1:   5400         -198.088             0.153            0.183
## Chain 1:   5500         -211.846             0.152            0.183
## Chain 1:   5600         -198.791             0.127            0.121
## Chain 1:   5700         -192.726             0.112            0.103
## Chain 1:   5800         -205.411             0.099            0.066
## Chain 1:   5900         -201.744             0.097            0.066
## Chain 1:   6000         -200.403             0.092            0.066
## Chain 1:   6100         -199.061             0.080            0.065
## Chain 1:   6200         -191.360             0.062            0.062
## Chain 1:   6300         -181.480             0.057            0.054
## Chain 1:   6400         -169.791             0.042            0.054
## Chain 1:   6500         -196.522             0.049            0.054
## Chain 1:   6600         -172.586             0.056            0.054
## Chain 1:   6700         -182.417             0.059            0.054
## Chain 1:   6800         -208.015             0.065            0.054
## Chain 1:   6900         -152.542             0.099            0.069
## Chain 1:   7000         -196.517             0.121            0.123
## Chain 1:   7100         -146.268             0.155            0.136
## Chain 1:   7200         -193.864             0.175            0.139
## Chain 1:   7300         -185.046             0.174            0.139
## Chain 1:   7400         -147.455             0.193            0.224
## Chain 1:   7500         -140.992             0.184            0.224
## Chain 1:   7600         -167.028             0.186            0.224
## Chain 1:   7700         -152.199             0.190            0.224
## Chain 1:   7800         -127.861             0.197            0.224
## Chain 1:   7900         -127.626             0.161            0.190
## Chain 1:   8000         -151.039             0.154            0.156
## Chain 1:   8100         -167.047             0.129            0.155
## Chain 1:   8200         -103.028             0.167            0.155
## Chain 1:   8300         -162.585             0.198            0.156
## Chain 1:   8400         -143.814             0.186            0.155
## Chain 1:   8500         -114.402             0.207            0.156
## Chain 1:   8600         -148.756             0.215            0.190
## Chain 1:   8700         -122.816             0.226            0.211
## Chain 1:   8800         -149.826             0.225            0.211
## Chain 1:   8900         -145.014             0.228            0.211
## Chain 1:   9000         -135.265             0.220            0.211
## Chain 1:   9100         -131.859             0.213            0.211
## Chain 1:   9200         -104.993             0.176            0.211
## Chain 1:   9300         -158.963             0.174            0.211
## Chain 1:   9400         -105.710             0.211            0.231
## Chain 1:   9500         -108.546             0.188            0.211
## Chain 1:   9600         -121.626             0.176            0.180
## Chain 1:   9700         -101.924             0.174            0.180
## Chain 1:   9800          -82.120             0.180            0.193
## Chain 1:   9900          -95.033             0.190            0.193
## Chain 1:   10000          -99.660             0.188            0.193
## Chain 1: Informational Message: The maximum number of iterations is reached! The algorithm may not have converged.
## Chain 1: This variational approximation is not guaranteed to be meaningful.
## Chain 1: 
## Chain 1: Drawing a sample of size 1000 from the approximate posterior... 
## Chain 1: COMPLETED.

Visualization

We can also plot the result of the screen:

plot(fit_screen)

References

ONeil, Jennifer, Yair Benita, Igor Feldman, Melissa Chenard, Brian Roberts, Yaping Liu, Jing Li, et al. 2016. “An Unbiased Oncology Compound Screen to Identify Novel Combination Strategies.” Molecular Cancer Therapeutics 15 (6): 1155–62. https://doi.org/10.1158/1535-7163.mct-15-0843.