Skip to contents

Extract acceptance ratio from Metropolis-Hastings algorithm used by compute_mallows() or by the move step in update_mallows() and compute_mallows_sequentially(). If burnin is not set in the call to compute_mallows(), the acceptance ratio for all iterations will be reported. Otherwise the post burnin acceptance ratio is reported. For the SMC method the acceptance ratios apply to all iterations, since no burnin is needed in here.

Usage

get_acceptance_ratios(model_fit, ...)

# S3 method for class 'BayesMallows'
get_acceptance_ratios(model_fit, ...)

# S3 method for class 'SMCMallows'
get_acceptance_ratios(model_fit, ...)

Arguments

model_fit

A model fit.

...

Other arguments passed on to other methods. Currently not used.

Value

A list with elements alpha_acceptance, rho_acceptance, and aug_acceptance. Each element contains acceptance ratios (between 0 and 1) for the corresponding parameter proposals in the Metropolis-Hastings algorithm. For models with multiple chains, each element is a list with one acceptance ratio per chain. Higher values indicate higher acceptance rates for the Metropolis-Hastings proposals.

Examples

set.seed(1)
mod <- compute_mallows(
  data = setup_rank_data(potato_visual),
  compute_options = set_compute_options(burnin = 200)
)

get_acceptance_ratios(mod)
#> $alpha_acceptance
#> $alpha_acceptance[[1]]
#> [1] 0.7038889
#> 
#> 
#> $rho_acceptance
#> $rho_acceptance[[1]]
#> [1] 0.4716667
#> 
#> 
#> $aug_acceptance
#> $aug_acceptance[[1]]
#> [1] NaN
#> 
#>