Skip to contents

Model estimation

Functions for estimating the Bayesian Mallows model.

`burnin<-`()
Set the burnin
burnin()
See the burnin
compute_mallows()
Preference Learning with the Mallows Rank Model
compute_mallows_mixtures()
Compute Mixtures of Mallows Models
compute_mallows_sequentially()
Estimate the Bayesian Mallows Model Sequentially
sample_prior()
Sample from prior distribution
update_mallows()
Update a Bayesian Mallows model with new users
assess_convergence()
Trace Plots from Metropolis-Hastings Algorithm

Preparing model estimation

Functions to run prior to fitting a model.

get_transitive_closure()
Get transitive closure
set_compute_options()
Specify options for computation
set_initial_values()
Set initial values of scale parameter and modal ranking
set_model_options()
Set options for Bayesian Mallows model
set_priors()
Set prior parameters for Bayesian Mallows model
set_progress_report()
Set progress report options for MCMC algorithm
set_smc_options()
Set SMC compute options
setup_rank_data()
Setup rank data

Posterior quantities

Functions for studying posterior distributions of model parameters.

assign_cluster()
Assign Assessors to Clusters
compute_consensus()
Compute Consensus Ranking
compute_posterior_intervals()
Compute Posterior Intervals
get_acceptance_ratios()
Get Acceptance Ratios
heat_plot()
Heat plot of posterior probabilities
plot(<BayesMallows>)
Plot Posterior Distributions
plot(<SMCMallows>)
Plot SMC Posterior Distributions
plot_elbow()
Plot Within-Cluster Sum of Distances
plot_top_k()
Plot Top-k Rankings with Pairwise Preferences
predict_top_k()
Predict Top-k Rankings with Pairwise Preferences
print(<BayesMallows>) print(<BayesMallowsMixtures>) print(<SMCMallows>)
Print Method for BayesMallows Objects

Rank functions

Various functions for sampling ranks and working with ranks.

compute_expected_distance()
Expected value of metrics under a Mallows rank model
compute_observation_frequency()
Frequency distribution of the ranking sequences
compute_rank_distance()
Distance between a set of rankings and a given rank sequence
create_ranking() create_ordering()
Convert between ranking and ordering.
get_mallows_loglik()
Likelihood and log-likelihood evaluation for a Mallows mixture model
sample_mallows()
Random Samples from the Mallows Rank Model

Partition functions

Tools related to computing or estimating the partition function of the Mallows model with various distances.

compute_exact_partition_function()
Compute exact partition function
estimate_partition_function()
Estimate Partition Function
get_cardinalities()
Get cardinalities for each distance

Datasets

Example datasets included in the package.

beach_preferences
Beach preferences
bernoulli_data
Simulated intransitive pairwise preferences
cluster_data
Simulated clustering data
potato_true_ranking
True ranking of the weights of 20 potatoes.
potato_visual
Potato weights assessed visually
potato_weighing
Potato weights assessed by hand
sushi_rankings
Sushi rankings